100 влажность природного газа

Влажность природных газов

Природный газ в пластовых условиях всегда насыщен парами воды, так в газоносных породах всегда содержится связанная, подошвенная или краевая вода.

Виды влажности. Влажность газа характеризуется концентрацией воды в паровой фазе системы газ вода.

Обычно она выражается массой паров воды, приходящейся на единицу массы сухого газа (массовая влажность) или числом молей паров воды, приходящейся на моль сухого газа (молярная влажность).

Абсолютная влажность W характеризуется количеством водяного пара в единице объема газовой смеси, приведенной к нормальным условиям (Т=273К, р=0,1Мпа), измеряется в г/м3 или кг/1000м3.

Относительная влажность отношение абсолютной влажности к максимальной, соответствующей полному насыщению парами воды, при данной температуре и давлении (в %). Полное насыщение оценивается в 100%.

Факторы, определяющие влагосодержание природных газов: давление, температура, состав газа; количество солей, растворенных в воде, контактирующей с данным газом.

Методы определения влагосодержания: экспериментально, по аналитическим уравнениям или номограммам, составленным при обработке экспериментальных или расчетных данных.

Влияние неуглеводородных компонент и свойств газа на влажность. Присутствие углекислого газа и сероводорода в газах увеличивает их влагосодержание. Наличие азота приводит к уменьшению влагосодержанияю, так как он способствует уменьшению отклонения газовой смеси от идеального газа и менее растворим в воде. С увеличение плотности (или молекулярной массы газа), за счет роста количества тяжелых углеводородов, влажность газа уменьшается из-за взаимодействия молекул тяжелых углеводородов с молекулами воды. Наличие в пластовой воде растворенных солей уменьшает влагосодержание газа, так как при растворении солей в воде снижается парциальное давление паров воды.

Влияние давления и температуры. При уменьшении температуры происходит уменьшение влагосодержания, а при падении давления его увеличение.

Состав и структура гидратов. Природный газ, насыщенный парами воды, при высоком давлении и при определенной положительной температуре способен образовывать твердые соединения с водой гидраты.

Особое значение гидратообразование приобретает при добычи газа из месторождений Сибири и Крайнего Севера. Низкие пластовые температуры и суровые климатические условия этих районов создают благоприятные условия для образования гидратов.

Гидраты природных газов представляют собой неустойчивое физико-химическое соединение воды с углеводородами, которое с повышением температуры или при понижении давления разлагается на газ и воду. По внешнему виду это белая кристаллическая масса, похожая на лед или снег.

Повышается температура системы

Гидраты относятся к веществам, в которых молекулы одних компонентов размещены в полостях решетки между узлами ассоциированных молекул другого компонента. Такие соединения обычно называют твердыми растворами внедрения, а иногда соединениями включения.

Читайте также:  Духовное бытие первая природа

По современным представлениям молекулы гидратообразователей в полостях между узлами ассоциированных молекул воды гидратной решетки удерживаются с помощью Ван-дер-Ваальсовых сил притяжения.

Влияние неуглеводородных компонент и свойств природного газа на гидратообразование. Увеличение процентного содержания сероводорода углекислого газа приводит к повышению равновесной температуры гидратообразования и понижению равновесного давления. Например, при давлении 50ата для чистого метана температура образования гидратов составляет 6оС, а при 25-ом содержании H2S она достигает 10оС. Природные газы, содержащие азот, имеют более низкую температуру образования гидратов, т. е. в этом случае гидраты становятся менее устойчивыми. Например, если в природном газе с относительной плотностью 0,6 отсутствует азот, гидраты его при температуре 10С остаются устойчивыми до давления 34 ата, если же в газе содержится 18% азота, равновесное давление гидратообразования снижается до 30ата

Для образования гидратов в жидких углеводородных газах требуются более высокое давление и более низкие температуры. В отличие от природных газов выделение гидратов в жидких углеводородных газах сопровождается увеличением давления системы (в замкнутом объеме). Кроме того, как и в природных газах, в этом случае выделяется теплота, в результате чего повышается температура системы. Поскольку объем остается постоянным, с увеличением температуры в системе растет и давление.

Разложение гидратов жидких углеводородных газов сопровождается уменьшением объема и, следовательно, понижением давления. Образование гидратов в жидких углеводородах идет несравнимо труднее, чем в газообразных. Чтобы начался этот процесс, требуется выдержать систему при соответствующих условиях в течение некоторого времени и в основном в условиях равновесия. Однако при отрицательных температурах после появления мелких кристалликов льда гидраты начинают образовываться быстро. Гидраты жидких углеводородных газов легче воды.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 0 / 5. Количество оценок: 0

Оценок пока нет. Поставьте оценку первым.

Источник

2.2.7 Влагосодержание газа

Влагосодержание – это количество паров воды, растворенных в единице объема природного газа при заданных условиях. Содержание водяных паров в газе характери­зуется абсолютной и относительной влажностью. Под абсолютной влажностью газа W при заданных давлении и температуре понимается отношение массы водяных паров, содержащихся в газе, к объему, приведенному к стандартным условиям этого газа, из которого удалены пары воды. Абсолютная влажность измеряется в кг/1000 м 3 . Относительная влажность — это отношение фактического содержания паров воды в единице объема газа при заданных давлении и температуре к его влагоемкости, т.е. к количеству водяных паров в том же объеме и при тех же давлении и температуре, но при помощи насыщения газа парами воды. Относительная влажность измеряется в долях единицы или в процентах.

Читайте также:  100 самых красивых мест природы

Влагосодержание газа зависит от состава газа, давления, температуры и физико-химических свойств конденсированной воды, с которой газ находится в термо­динамическом равновесии, оно определяется по формуле

где W0,6 – влагосодержание газа с относительной плотностью =0,6 с пресной водой; Сс – поправка на соленость воды; Ср – поправка на отклонение плотности данного газа от величины =0,6.

Влагосодержание газа с относительной плотностью 0,6 и поправки на соленость воды и на плотность газа определяются графически из рисунка 2.16. При отрицательных температурах, что связано с условиями подготовки газов на промыслах и газопе­рерабатывающих заводах, необходимо учесть и температурную поправку Сt, исполь­зуя при этом графическую зависимость Сt от температуры Т для различных давлений, показанную на рисунке 2.17.

Величина W0,6 может быть рассчитана по формуле, полученной путем аппрокси­мации графической зависимости, показанной на рисунке 2.16:

где А – влагосодержание идеального газа; В – коэффициент, зависящий от состава газа; Р – давление.

Значения коэффициентов А и В приведены в таблице 2.8. Эти же коэффициенты могут быть определены аналитическим путем.

Величину А можно определить по формуле:

(2.46)

где Рвп – давление насыщенного пара воды над конденсированной фазой, которое может быть определено по данным, приведенным в таблицах 2.3 или 2.9 и из рисунка 2.3 для различных температур, или рассчитано приближенно при 203≤Т≤373 К по формуле:

Рисунок 2.16 – Зависимость влагосодержания природного газа W0,6 с относительной плотностью =0,6 от давления и температуры.

Рисунок 2.17 – Зависимости поправочных коэффициентов на влажность газа от содержания солей (а), температуры (б) и относительной плотности (или молекулярной массыМ) (в).

Таблица 2.8 – Значения коэффициентов А и В в формуле (2.45).

Таблица 2.9 – Значения Рвп от температуры.

Рвп=ехр[–0,60212(0,01Т) 4 +1,475(0,01Т) 3 –2,97304(0,01Т) 2 +

и при 373≤Т≤623 К по формуле:

Рвп=ехр[–0,0366(0,01Т) 4 +0,4375(0,01Т) 3 –2,2148(0,01Т) 2 +

Значение коэффициента В в формуле (2.45) приближенно может быть определено по формуле:

В=10 -3 ехр[0,0685(0,01Т) 4 –0,3798(0,01Т) 3 +1,06606(0,01Т) 2 –

Значение W0,6 может быть вычислено по формуле, полученной путем обработки данных по А и В, приведенных в таблице 2.8:

W0,6=0,4736ехр(0,0735T–0,00027T 2 )+0,0418ехр(0,054T–0,0002T 2 ) (2.50)

При проведении расчетов со значительным объемом вычислений целесо­образно поправки на соленость воды и на плотность с учетом влияния температуры производить аппроксимацией кривых, показанных на рисунке 2.17а, б в виде:

Читайте также:  Выбрать одну картину природы

Сρ=10 -7 Т 2 –1,1·10 -3 Т–0,079+0,73·10 -3 Т+0,156+0,927 (2.52)

где К – соленость воды, кг/м 3 ; Т – температура, 0 С; – относительная плотность газа.

Приведенные выше графические и расчетные методы определения влагосодержания газа не учитывают наличие кислых компонентов. Наличие в газе СО2 и H2S повышает, а N2 снижает влагосодержание газов.

Если содержание сероводорода в природном газе превышает 20 об.%, то влагосодержание определяют по правилам аддитивности, учитывающей наличие в газе сероводорода:

где х, хCO2, хH2S – мольные доли углеводородных компонентов, двуокиси углерода и сероводорода в газе; W, WCO2, WH2S – содержание влаги в углеводородной части газа,двуокиси углерода и сероводорода.

Значения W, WCO2, WH2S определяются графически из рисунков 2.16, 2.18 и 2.19а.

Рисунок 2.18 – Зависимость влагосодержания углекислого газа WСО2, от давления и температуры.

Рисунок 2.19а – Зависимость влагосодержания сероводорода WH2S от давления и температуры.

Влагосодержание природного газа, находящегося в равновесии с растворами гликолей, может быть определено согласно [18].

Определение влагосодержания сероводородсодержащих газов

Для более точного определения влагосодержания сероводородсодержащего природного газа при содержании сероводорода до 50% мольных долей и давлении до Р=70 МПа и температуре 10≤Т≤175 0 С необходимо использовать следующий метод: Сначала определить влагосодержание несернистого газа (углеводородные компоненты газа) изрисунка 2.19б; Затем определить мольное содержание в процентах эквивалентной концентрации сероводорода Н2Sв сернистом газе из равенства Н2Sэкв2S+0,7·СО2, в %; Далее для заданной величины температуры Т и рассчитанному значению эквивалентной концентрации сероводорода в газе Н2Sэкв, используя кривые, показанные нарисунке 2.19б(см. последовательность нахождения относительного влагосодержания сероводородсодержащего газа к влагосодержанию несернистого газа) находят. Для этого необходимо для известной величины температуры горизонтальной линией пересечь кривую Н2Sэкв, а затем из точки пересечения провести вертикальную линию до пересечения с кривой давления, при котором требуется определить влагосодержание сернистого газа. Из точки пересечения вертикальной линии с кривой давления провести горизонтальную линию до оси ординат с относительным влагосодержанием сернистого газа. Ключ к получению ответа о влагосодержании сернистого газа показан нарисунке 2.19б. Из приведенных результатов видно, что с увеличением сероводорода в газе влагосодержание увеличивается.

Рисунок 2.19б Номограмма для определения относительного влагосодержания сернистого газа.

Источник

Оцените статью