Аминокислоты имеют белковую природу

Аминокислоты

А вы знаете, что многие ученые называют жизнь на земле «белковой»? Основу белка составляют аминокислоты. А как они появились на Земле?

метеорит

Белки — это макромолекулы, имеющие большую молекулярную ( до 1,5 млн у.е.) массу. Все белки являются полимерами нерегулярного строения, состоящими из отдельных мономеров — аминокислот, определяющихся генетическим кодом.

Есть такая гипотеза, что в самом начале на Земле не было всех тех органических соединений, которые мы наблюдаем теперь. И в то далекое-предалекое время наша планета постоянно подвергалась бомбардировке метеоритами и кометами. И эти самые метеориты содержали в себе органические соединения, в том числе и аминокислоты. Получается, что жизнь на Землю принесли извне…

У любой теории есть много как сторонников, так и противников. В научном мире жаркие споры по этой теме до сих пор не угасают, наша задача — разобраться что такое аминокислоты и белки какую роль они играют в нашем мире.

Аминокислота — вещество, имеющее двойственную природу:

аминокислоты

Из-за наличия аминогруппы и карбоксильной группы аминокислоты амфотерны — проявляют и основные и кислотные свойства и могут соединяться между собой. Такая связь называется пептидной.

образование полипептида

Белков на Земле огромное количество. Это обязательная часть химического состава клетки. Как получилось, что природа имеет столько вариантов?

  1. Аминокислоты в белке могут находиться в разной последовательности. Именно разные сочетания аминокислот в белковой цепи дает такую вариативность.

В природе известно 20 видов аминокислот.

Откуда они берутся в природе? Обычно они получаются при гидролизе белков и затем, в ходе обмена веществ, опять образуют белки.

заменимые и незаменимые аминокислоты

Заменимые аминокислоты наш организм может синтезировать сам, но при этом обеспечивается только минимум потребностей организма.

Незаменимые аминокислоты — те, которые организм потребляет извне — с белковой пищей или образуются из других аминокислот.

Интересно то, что растения могут синтезировать ВСЕ аминокислоты! Что бы мы без них делали? И кислород они нам для дыхания поставляют, и аминокислотами у них запастись можно… одним словом, Продуценты!

Читайте также:  Все природные явления луны

Для формата ЕГЭ не нужно знать наизусть все 20 аминокислот и их формулы, но надо понимать их строение и функции в организме, ведь аминокислоты — «кирпичики» белков, а жизнь у нас именно белковая! 🙂

Белки

они же полипептиды, они же протеины

Ф.Энгельс биологом не был, но дал такое определение жизни:

Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка

Конечно, это определение не научное и не затрагивает очень многие признаки живых систем, но определяет один самый важный момент —

жизнь на земле белковая

Строение и функции белков

Белки — полимеры, мономерами которых являются аминокислоты. В составе белков всего 20 аминокислот, а вот комбинаций этих аминокислот может быть очень много! За счет этого достигается разнообразие. Поэтому белков в природе огромное количество!

Белковый состав так и записывается — последовательностью аминокислот, которые обозначаются тремя буквами:

полипептидная цепь

То, что показано на рисунке — последовательность аминокислот — это целая длинная большая молекула (то, что приведено здесь — это очень маленький белок, обычно такие молекулы на порядок длиннее).

В теме про аминокислоты мы уже рассмотрели механизм образования такого полимера — полипептида.

  • простые — состоят только из аминокислот;
  • сложные — кроме аминокислот содержат вещества небелковой природы.

Первичная структура (конформация) белка

— это именно эта последовательность — то, какие аминокислоты и в какой последовательности они соединены ковалентными связями.

полипептидная цепочка

Вторичная структура белка

Это спираль, которая образуется уже за счет межмолекулярных — водородных связей.

полипептидная спираль

Третичная структура белка

Эта структура образована свернутыми спиралями — такое образование называется глобула.

Четвертичная структура белка

это совместное объединение нескольких схожих по строению третичных белковых структур (глобул или субъединиц) в единую молекулу с приобретением ею природных свойств.

Сами глобулы в этой структуре называют протомерами, а само четвертичное образование — мультимером.

белок гемоглобин

Белки довольно легко подвергаются разрушению. Сначала «ломается» четвертичная, потом третичная, потом уже вторичная структура. Разрушить первичную структуру сложнее. Это уже, скорее, химическое взаимодействие.

Читайте также:  Государственные природные заповедники республики башкортостана

Разрушение структур белка называется денатурацией. Свойства белка при этом теряются.

Самые известные денатуранты -температура (нагревание), спирт, кислоты и щелочи.

Простой и повседневный пример денатурации — яичница! 🙂

Ренатурация — обратный процесс — восстановление разрушенной структуры белка.

Функции белков

  • структурная — белок является обязательным компонентом любой мембраны, любого хряща…
  • почти все ферменты имеют белковую природу. Ферменты=биокатализаторы. На каждую реакцию есть свой фермент.

аминокислоты и белки

Функций у белков очень много… то, что перечислено выше — только самые основные.

аминокислоты и белки

аминокислоты и белкиаминокислоты и белки

  • у разных видов есть одинаковые белки, выполняющие определенные функции (например, у собаки и человека за регуляцию сахара в крови отвечает гормон инсулин)
  • у представителей одного вида белки могут отличаться по строению (например, белки групп крови)

Белки — основа жизни на Земле, и найти какие-либо процессы, проходящие в живом организме без их участия, практически невозможно…

Редко, но все же встречаются в вопросах ЕГЭ такие термины:

Источник

7. Аминокислоты, входящие в состав белков, их строение и свойства. Пеп­тидная связь. Первичная структура белков.

α-Аминокислотыпредставляют собой производные карбоновых кислот, у которых один водородный атом, у α-углерода, замещен на аминогруппу (—NH2).

Аминокислоты будут отличаться друг от друга химической природой радикала R, представляющего группу атомов в молекуле аминокислоты, связанную с α-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все α-амино- и α-карбоксильные группы участвуют в образовании пептидных связейбелковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно-основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью. В состав белков входят 20 природных аминокислот.

Кислотно-основные свойства.Эти свойства аминокислот определяют многие физико-химические и биологические свойства белков. На этих свойствах основаны, кроме того, почти все методы выделения и идентификации аминокислот. Аминокислоты легко растворимы в воде. Они кристаллизуются из нейтральных водных растворов в форме биполярных (амфотерных) ионов, а не в виде недиссоциированных молекул. В связи с этим, они могут проявлять как основные, так и кислотные свойства, что зависит еще от природы входящего в их состав радикала.

Стереохимия аминокислот.Важнейшим свойством аминокислот, освобождающихся в процессе гидролиза природных белков в условиях, исключающих рацемизацию, является их оптическая активность. Это свойство связано с наличием в молекуле всех природных аминокислот (за ислючением глицина) в α-положении асимметрического атома углерода. Стереохимию аминокислот принято оценивать не по оптическому вращению, а исходя из абсолютной конфигурации всех четырех замещающих групп, расположенных вокруг асимметрического атома углерода в вершинах модели тетраэдра. Абсолютную конфигурацию аминокислот принято соотносить стереохимически с соединением, произвольно взятым для сравнения, а именно с глицериновым альдегидом, также содержащим асимметрический атом углерода. Все аминокислоты, образующиеся при гидролизе природных белков в условиях, исключающих рацемизацию, принадлежит к L-ряду. Таким образом, природные аминокислоты имеют пространственное расположение, аналогичное конфигурации L-глицеринового альдегида.

Пептидная связь— вид амидной связи, возникающей при образованиибелковипептидовв результате взаимодействия α-аминогруппы (—NH2) однойаминокислотыс α-карбоксильной группой (—СООН) другой аминокислоты. Из двухаминокислот(1) и (2) образуетсядипептид(цепочка из двух аминокислот) и молекула воды. По этой же схемерибосомагенерирует и более длинные цепочки из аминокислот:полипептидыибелки.

Первичная структура— последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являютсяконсервативные мотивы— сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессеэволюциивидов, по ним часто удаётся предсказать функцию неизвестного белка. Первичная структура предопределяет все дальнейшие виды организации белковой молекулы.

Источник

Читайте также:  Веды о мужской природе
Оцените статью