Чем различаются химический состав тела живой неживой природы

В чем отличие химической организации живых организмов от объектов неживой природы кратко

В отличии от живых организмов, неживые не нуждаются в питании, соответственно они не содержат питательные вещества. Живая природа способна расти, размножаться и тд. а неживая — нет.

Как написать хороший ответ? Как написать хороший ответ?

  • Написать правильный и достоверный ответ;
  • Отвечать подробно и ясно, чтобы ответ принес наибольшую пользу;
  • Писать грамотно, поскольку ответы без грамматических, орфографических и пунктуационных ошибок лучше воспринимаются.

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Вопрос 2. В чем различие химической организации живых организмов и объектов неживой природы?
В состав живого входят те же химические элементы, что составляют и тела неживой природы. Однако их количественное соотношение в живой и неживой природе различно. Так, в земной коре первые четыре места по распространенности занимают кислород, кремний, алюминий и натрий. Основу живых систем составляют углерод, водород, кислород, азот, а также фосфор и сера. Для них характерно образование водорастворимых соединений, что позволяет им накапливаться в живых организмах. Способность атомов углерода соединяться между собой в длинные цепи и при этом образовывать химические связи и с другими элементами обеспечивает создание сложных органических молекул, подчас имеющих огромную молекулярную массу. Это белки, жиры, углеводы, нуклеиновые кислоты и другие органические соединения, наряду с неорганическими составляющие живое вещество.

Вопрос 4. Чем различаются процессы обмена у живых организмов и в неживой природе?
Для живых объектов характерна особая форма взаимодействия с окружающей средой – обмен веществ. Основу его составляют взаимосвязанные и сбалансированные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Эти процессы направлены на обновление структур организма, а также на обеспечение различных сторон его жизнедеятельности необходимыми питательными веществами и энергией, т.е. существование организма как открытой системы. Но это явление встречается и в неживой природе. При горении из воздуха поглощается кислород, и используются органические вещества, например уголь. При этом в окружающую среду выделяются разнообразные соединения.
Главное отличие обмена веществ в живой природе — возможность осуществлять реакции синтеза высокомолекулярных соединений (белков, липидов, углеводов, нуклеиновых кислот) и их распада.

Читайте также:  Дом природы лоцман время работы

Вопрос 5. Какова роль изменчивости и наследственности в развитии жизни на нашей планете?
Наследственность — свойство организмов передавать признаки своего строения, функционирования и развития потомкам, из поколения в поколение. Изменчивость — способность живых систем приобретать новые признаки и свойства. Эти два свойства живого тесно взаимосвязаны и играют огромную роль в развитии жизни на Земле.
Наследственность и изменчивость обеспечивают: индивидуальное наследование и изменение отдельных признаков; воспроизведение в особях каждого поколения всего комплекса морфофункциональных характеристик организма конкретного вида; перераспределение у видов с половым размножением в процессе воспроизведения наследственных задатков, в результате чего потомок имеет сочетание признаков, отличие от их сочетания у родителей. Изменения в генетическом материале приводят к появлению у организмов новых признаков, их сочетания определяют степень приспособленности особи в конкретных условиях. Поэтому изменчивость является поставщиком разнообразного материала для отбора наиболее жизнеспособных особей, которые затем передадут признаки своего строения и развития по наследству. Это ведет к возникновению новых видов организмов.

Химическое строение живых и неживых объектов

В чем различие химической организации живых организмов и объектов неживой природы?

В состав живого входят те же химические элементы, что составляют и тела неживой природы. Однако их количественное соотношение в живой и неживой природе различно. Так, в земной коре первые четыре места по распространенности занимают кислород, кремний, алюминий и натрий. Основу живых систем составляют углерод, водород, кислород, азот, а также фосфор и сера. Для них характерно образование водорастворимых соединений, что позволяет им накапливаться в живых организмах. Способность атомов углерода соединяться между собой в длинные цепи и при этом образовывать химические связи и с другими элементами обеспечивает создание сложных органических молекул, подчас имеющих огромную молекулярную массу. Это белки, жиры, углеводы, нуклеиновые кислоты и другие органические соединения, наряду с неорганическими составляющие живое вещество.

Открытые системы

Для поддержания упорядоченности биосистемы и экосистемы обмениваются с окружающей средой веществом и энергией. Следовательно, живые системы — открытые системы. В результате обменных процессов происходит непрерывное обновление большинства элементов живой системы.

Обмен веществ

Чем различаются процессы обмена у живых организмов и в неживой природе?

Обмен веществ — характерное свойство живых организмов, заключающееся в потреблении живой системой веществ из окружающей среды и выделении в нее различных продуктов жизнедеятельности. Но это явление встречается и в неживой природе. При горении из воздуха поглощается кислород и используются органические вещества, например уголь. При этом в окружающую среду выделяются разнообразные соединения. Главное отличие обмена веществ в живой природе — возможность осуществлять реакции синтеза высокомолекулярных соединений и их распада.

Читайте также:  Рысь природная зона обитания

Роль изменчивости и наследственности

Какова роль изменчивости и наследственности в развитии жизни на нашей планете?

Наследственность — свойство организмов передавать признаки своего строения, функционирования и развития потомкам, из поколения в поколение. Изменчивость — способность живых систем приобретать новые признаки и свойства. Эти два свойства живого тесно взаимосвязаны и играют огромную роль в развитии жизни на Земле. Изменения в генетическом материале приводят к появлению у организмов новых признаков, их сочетания определяют степень приспособленности особи в конкретных условиях. Поэтому изменчивость является поставщиком разнообразного материала для отбора наиболее жизнеспособных особей, которые затем передадут признаки своего строения и развития по наследству. Это ведет к возникновению новых видов организмов.

Молекулярный уровень организации жизни

Какие процессы исследуют ученые на молекулярном уровне?

На молекулярном уровне изучаются важнейшие процессы жизнедеятельности организма: его рост и развитие, обмен веществ и превращение энергии, хранение и передача наследственной информации, изменчивость.

Состав живого организма

Какие элементы преобладают в составе живых организмов?

В составе живого организма насчитывают более 70–80 химических элементов, однако преобладают углерод, кислород, водород и азот.

Внутриклеточные биополимеры

Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?

Молекулы белков, нуклеиновых кислот, углеводов и липидов являются полимерами, так как состоят из повторяющихся мономеров. Но лишь в живой системе (клетке, организме) эти вещества проявляют свою биологическую сущность, обладая рядом специфических свойств и выполняя множество важнейших функций. Поэтому в живых системах такие вещества называют биополимерами. Вне живой системы эти вещества теряют свои биологические свойства и не являются биополимерами.

Универсальность молекул биополимеров

Что понимается под универсальностью молекул биополимеров?

Свойства биополимеров зависят от числа, состава и порядка расположения составляющих их мономеров. Возможность изменения состава и последовательности мономеров в структуре полимера позволяет существовать огромному разнообразию вариантов биополимеров, независимо от видовой принадлежности организма. У всех живых организмов биополимеры построены по единому плану.

Строение углеводов

Какой состав и строение имеют молекулы углеводов?

Моносахариды, дисахариды и полисахариды

Какие углеводы называются моно-, ди- и полисахаридами?

Моносахариды — это углеводы, в состав которых входит от трех до шести атомов углерода. Из шестиуглеродных сахаров известны глюкоза, фруктоза, галактоза, из пятиуглеродных сахаров — рибоза и дезоксирибоза. Последние входят в состав нуклеиновых кислот. Дисахариды состоят из двух молекул моносахаридов. Например, сахароза (тростниковый сахар) состоит из молекул глюкозы и фруктозы. Из дисахаридов известны также мальтоза (солодовый сахар) и лактоза (молочный сахар). И моно- и дисахариды растворимы в воде и сладки на вкус. Полисахариды — сложные сахара, состоящие из множества мономеров, которыми являются моносахариды. К полисахаридам относятся крахмал, гликоген, целлюлоза, хитин. Целлюлоза — линейный полимер, состоящий из множества молекул глюкозы. Крахмал и гликоген также состоят из глюкозы, только имеют разветвленную структуру.

Читайте также:  Где обитает жаворонок природная зона

В состав живого входят те же химические элементы, что сочиняют и тела неживой природы. Но их количественное соотношение в живой и неживой природе разно. Так, в земной кожуре 1-ые четыре места по распространенности занимают кислород, кремний, алюминий и натрий. Базу живых систем сочиняют углерод, водород, кислород, азот, а также фосфор и сера. Для них характерно образование водорастворимых соединений, что дозволяет им скапливаться в живых организмах. Способность атомов углерода соединяться меж собой в длинноватые цепи и при этом создавать химические связи и с иными элементами обеспечивает создание трудных органических молекул, тотчас имеющих громадную молекулярную массу. Это белки, жиры, углеводы, нуклеиновые кислоты и другие органические соединения, наряду с неорганическими составляющие живое вещество.

Источник

Чем отличается химический состав тел живой и неживой природы? Помогите завтра тест

Состав живых организмов насчитывает всего 16 химических элементов, в то время как неживая природа – более 110 элементов. Из 16 элементов живой природы четыре элемента – углерод, водород, кислород и азот – составляют 99 % массы живого вещества. Связано это с особенностями физических и химических свойств этих элементов – валентностью, способностью образовывать прочные ковалентные связи между атомами. В живом организме главным элементом является углерод. В основе живого лежат углеродные соединения, где атомы углерода связываются между собой прочной ковалентной связью. Это обеспечивает стабильность и прочность как химического соединения, так и живого организма в целом. Атомы углерода способны образовывать длинные разветвленные цепочки как друг с другом, так и с атомами кислорода, водорода, азота. По существу, все живое – это «углеродные» тела. Раньше полагали, что молекулы углерода присущи только живому. Поэтому соединения углерода получили названия органических. В природе соединений углерода существует гораздо больше, чем соединений других элементов таблицы Менделеева, причем большая их часть не связана с живыми организмами.

В состав живого входят также такие макроэлементы, как фосфор, сера, калий, кальций, магний, железо, натрий. Они образуют группу так называемых биофильных элементов, или органогенов. Важное функциональное значение для организмов имеют и микроэлементы: кобальт, бор, цинк, молибден, йод, медь. Они составляют сотые и тысячные доли процента от массы организмов.

Элементный состав неживой природы наряду с кислородом представлен в основном кремнием, железом, магнием, алюминием и т. д

в живой природе содержатся аминокислоты, у живой природы хим. состав как у аминокислот, а в неживой всякие простые вещества простые соли и оксиды

в живой природе содержатся аминокислоты, у живой природы хим. состав как у аминокислот, а в неживой всякие простые вещества простые соли и оксиды

Источник

Оцените статью