Живые системы и их особенности
Живые системы обладают рядом свойств, которые отличают их от систем неживой природы. Такими особенностями являются:
- обмен веществ
- единство химического состава
- наследственность
- репродукция
- развитие и рост
- изменчивость
- ритмичность
- дискретность
- раздражимость
- гомеостаз
- энергозависимость.
Характеристика особенностей
Единство химического состава означает, что в составе всех живых организмов находятся те же химические элементы, что и в объектах неживой природы. Но соотношение этих элементов в живых и неживых объектах отличается. Состав объектов неживой природы представлен, кроме кислорода, алюминием, магнием, железом, кремнием и т.д. А живые организмы на 98% состоят из четырех элементов – кислорода, углерода, водорода и азота.
К обмену веществ с окружающей средой способны все живые организмы. Они поглощают из окружающей среды элементы, которые необходимы для питания, и выделяют продукты жизнедеятельности. Однако, в случае с небиологическом круговоротом веществ они лишь перемещаются с места на место либо меняется их агрегатное состояние, тоу живых организмов обмен веществ происходит на качественно другом уровне, включая процессы распада и синтеза. В процессе целого ряда разных сложных химических превращений поглощенные из окружающей среды вещества трансформируются в вещества, из которых строится тело живого организма. Эти процессы называются ассимиляцией. В результате обратных процессов – диссимиляции, происходит распад сложных соединений на простые. В этом случае выделяется энергия, которая необходима для реакции биосинтеза. Поэтому процесс диссимиляции называется энергетическим обменом. Благодаря обмену веществ обеспечивается постоянство химического состава, а также структуры всех составляющих частей организма, тем самым обеспечивается постоянство их функционирования.
Еще одной особенностью живых систем является способность к самовоспроизведению. Самовоспроизведение, размножение, репродукция – это способность организмов производить себе подобных. Процесс репродукции осуществляется на всех уровнях организации живой материи.
Такое свойство живых систем, как наследственность, состоит в способности живых организмов к передаче своих свойств, особенностей развития, признаков из поколения в поколение. Свойство наследственности обусловливается стабильностью, которая основана на постоянстве строения ДНК.
Противоположным наследственности, но тесно с ней связанным свойством является изменчивость. Под изменчивостью понимается способность организмов приобретать новые свойства и признаки. Изменчивость является основой для естественного отбора, что приводит к возникновению новых видов живых организмов и появлению новых форм жизни.
Следующей особенностью живых систем является рост и развитие. Развитие означает необратимое направленное изменение структуры объектов или их состава. Развитие живых форм представлено онтогенезом и филогенезом, то есть индивидуальным и историческим развитием. В ходе развития проявляется специфическая структурная организация индивидуальной особи, а репродукция макромолекул, клеток и их элементарных структур вызывает увеличение биомассы. Результатом филогенеза является многообразие живого на Земле.
Раздражимость – еще одно свойство живых систем. Любой организм связан с окружающей средой, он получает из нее питательные вещества, взаимодействует с другими организмами, подвергается влиянию факторов окружающей среды и т.д. В ходе эволюции у организмов выработалось и укрепилось свойство реагировать избирательно на воздействия извне. Такое свойство называется раздражимостью. Любое изменение условий окружающей среды является раздражением для организма, реакция организма на раздражители показывает его чувствительность. Реакция многоклеточных организмов на внешний раздражитель называется рефлексом, и происходит посредством нервной системы.
Под словом дискретность понимается свойство живых систем проявляться в виде разделенных, дискретных форм.
Отдельно взятый организм либо какая-то другая биологическая система состоит из отдельных, обособленных либо ограниченных в пространстве, но при этом тесно взаимодействующих частей, которые образуют структурно-функциональное единство. Каждый вид включает отдельные особи. Каждая особь состоит из органов, которые состоят из клеток. Свойство дискретности живой системы выступает в качестве основы структурной упорядоченности и способности самообновления. Дискретность вида обусловливает возможность его эволюции посредством устранения от размножения либо гибели неприспособленных особей и сохранение организмов с признаками, полезными для выживания.
Ритмичность живых систем означает периодические изменения интенсивности физиологических функций.
Период колебаний может быть разным, от секунд до столетий. Например, известны суточные ритмы бодрствования и сна; сезонные ритмы активности у ряда животных и т.д. Ритмичность обеспечивает согласование функций организма со средой его обитания. Другими словами, ритмичность – приспособление организма к постоянно изменяющимся условиям окружающей среды.
Живые системы являются относительно энергозависимыми. Все живые организмы представляют собой открытые системы, которые устойчивы только при условии непрерывного доступа энергии и материи из окружающей среды. В отличие от неживых объектов, живые организмы от окружающей среды ограничены оболочками – у многоклеточных организмов это покровная ткань, а у одноклеточных — клеточная мембрана. Оболочки сводят к минимуму потерю веществ и обеспечивают поддержание пространственного единства живой системы.
Под гомеостазом понимается совокупность приспособительных реакций организма, которые направлены на сохранение динамического состояния его внутренне среды – кровяного давления, температуры и т.д.
Принцип отрицательной обратной связи является основой гомеостаза. Саморегуляция позволяет живым системам сохранят стационарное состояние в непрерывно меняющейся окружающей среде, и обеспечивает их выживание.
Источник
Единство химического состава организмов
Множество простейших и микроорганизмов представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных — растений, животных и человека — построено из большего или меньшего числа клеток, которые составляют сложный организм. Независимо от того, представляет собой клетка целостную живую систему или ее часть, она наделена набором признаков и свойств, общим для всех клеток.
В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. Элементарный состав неживой природы наряду с кислородом представлен в основном кремнием, железом, магнием, алюминием и т. д, В живых организмах 98% химического состава приходится на четыре элемента: углерод, кислороду азот и водород, в то время как на остальные (свыше 60 элементов) — всего 1—2% массы клетки.
Углерод, кислород, азот и водород, как главные компоненты клетки, называются макроэлементами. Вместе с серой и фосфором, являющимися необходимыми составными частями молекул биополимеров, их часто называют биоэлементами. В меньших количествах в состав клетки, кроме фосфора и серы, входят еще 6 элементов: калий и натрий, кальций и магний, железо и хлор. Каждый из них выполняет важную функцию в клетке. Например, калий, натрий и хлор обеспечивают проницаемость клеточных мембран, кальций и фосфор участвуют в формировании костной ткани, железо входит в состав гемоглобина крови, магний в растительных клетках — в хлорофилл, обусловливающий фотосинтез, а также входит в состав катализаторов. Все остальные элементы (цинк, медь, йод, фтор и др.) содержатся в клетках в малых количествах — 0,02%. Поэтому их называют микроэлементами. Однако это не означает, что они меньше нужны организму, чем другие элементы. Цинк входит в состав гормона поджелудочной железы инсулина, йод — гормона щитовидной железы, с помощью которых осуществляется гуморальная регуляция деятельности организма.
Запись опубликована в рубрике Общая биология с метками организм, состав. Добавьте в закладки постоянную ссылку.
Источник
напишите мне определение «Единство химического состава — это. » . биология 9 класс
Единство химического состава живых организмов
В состав живых организмов входят более 70 химических элементов, встречающихся в природе. Однако соотношение различных химических элементов в живой и неживой природе неодинаково. Например, состав неживой природы наряду с кислородом представлен также кремнием, железом, магнием, алюминием и т. д. В живых организмах 98% их химического состава приходится на четыре элемента — углерод, кислород, азот, водород. Эти элементы участвуют в образовании сложных органических молекул живых организмов. В неживой природе эти элементы встречаются в другом качестве. В основном органические соединения, встречающиеся в неживой природе, — продукты жизнедеятельности живых организмов. Органические молекулы, входящие в состав живых организмов, имеют свои характерные особенности и выполняют определенную функцию. К первой, основной группе органических соединений в живых организмах относятся нуклеиновые кислоты — ДНК, РНК. Эти соединения передаются по наследству с помощью явлений наследственности и изменчивости и позволяют сохранять непрерывность жизни живых организмов. Ко второй группе органических соединений в составе живых организмов относятся белки. Белки входят в состав некоторых органоидов клетки, а также выполняют функцию биологического катализатора. К третьей группе органических соединений относятся углеводы и жиры. Они обеспечивают организм необходимой энергией и участвуют в образовании структуры биологической мембраны и клеточной оболочки.
Источник
на основе знаний об элементарном составе клетки раскройте единство живой и неживой природы
1. единство химического состава — в состав живых организмов входят те же элементы, что и в объекты неживой природы, но в ином соотношении: в живых организмах 98% химического состава приходится на 4 элемента — С-углерод, O-кислород, N-азот, H-водород; живые организмы построены в основном из 4 крупных групп сложных органических молекул — нуклеиновых кислот, белков, полисахаридов и жиров;
2. обмен веществ: все живые организмы поглощают из окружающей среды необходимые для жизни вещества и выделяют продукты жизнедеятельности, при этом происходят химические превращения веществ (в отличие от неживой природы, где обмен веществами представляет собой их простой перенос с одного места на другое или изменение агрегатного состояния) ; обмен веществ обеспечивает гомеостаз — постоянство химического состава и строения частей организма и, соответственно, постоянство их функционирования;
3. самовоспроизведение* , или репродукция — образование новых структур на основе информации, заложенной в ДНК; это одно из основных свойств живого, тесно связанное с явлением наследственности;
4. наследственность — способность организма обеспечивать передачу своих признаков из поколения в поколение;
5. изменчивость — способность организмов приобретать новые свойства и признаки; эта способность лежит в основе естественного отбора;
5. рост и развитие; способность к развитию — всеобщее свойство материи, в результате развития возникает новое качественное состояние системы; развитие живых форм представлено онтогенезом — индивидуальным развитием, и филогенезом — историческим развитием видов;
6. раздражимость — свойство живых организмов избирательно реагировать на внешние воздействия;
7. дискретность (от лат. discretus = прерывистый, разделённый) — всеобщее свойство материи: атом состоит из элементарных частиц, молекулы — из атомов, простые молекулы входят в состав сложных соединений и т. д. ; жизнь на Земле также проявляется в виде дискретных форм: любой вид организмов состоит из отдельных особей, тело каждой высокоорганизованной особи — из обособленных и ограниченных в пространстве, но тем не менее тесно взаимодействующих между собой частей, органы состоят из отдельных тканей и клеток и т. д. ; дискретность строения организма — основа его структурной упорядоченности, она создаёт возможность постоянного самообновления организма путём замены «износившихся» элементов (ферментов, молекул, целых клеток) без прекращения выполняемой функции;
8. саморегуляция (авторегуляция) — способность организмов обеспечивать постоянство своего химического состава и физиологических процессов в постоянно меняющихся условиях среды;
9. ритмичность — периодические изменения интенсивности физиологических функций с различными периодами колебаний (напр. , суточные ритмы сна и бодрствования, сезонные колебания активности и спячки у некоторых животных и др.) ; ритмичность обеспечивает согласование функций организма с окружающей средой;
10. энергозависимость — живые организмы существуют до тех пор, пока в них поступает энергия и материя из окружающей среды, т. е. являются открытыми системами.
Источник