Электромагнитную природу имеют волны

Природа электромагнитных волн

Практически всё, что мы знаем о космосе (и микромире), известно нам благодаря электромагнитному излучению, то есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света. Собственно, свет — это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.

Точное описание электромагнитных волн и их распространения дают уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон — почти точечный отрицательный электрический заряд. Вокруг себя он создает электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные — сила притяжения, причем все эти силы направлены строго по радиусам, идущим от нашего электрона. С расстоянием влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Иначе говоря, во всем бесконечном пространстве вокруг себя электрон создает радиальное силовое поле (это верно лишь для электрона, который вечно покоится в одной точке).

Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может. На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено, а кое-что в нем даже просто неверно, но оно дает первое впечатление о том, как распространяются электромагнитные волны.

Читайте также:  Природные ресурсы главные определения

Неверно же в этом описании вот что. Описанный процесс на самом деле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас есть, а вот колебаний нет. Но этот недостаток очень легко поправить. Заставим ту же силу, которая вывела электрон из первоначального положения, сразу же вернуть его на место. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение дел. Пусть теперь электрон периодически повторяет это движение, и тогда по радиальным силовым линиям электрического поля во все стороны побегут настоящие волны. Эта картина уже много лучше первой. Впрочем, она тоже не вполне верна — волны получаются чисто электрическими, а не электромагнитными.

Тут самое время вспомнить о законе электромагнитной индукции: изменяющееся электрическое поле порождает магнитное, а изменяющееся магнитное — электрическое. Эти два поля как бы сцеплены друг с другом. Как только мы создаем волнообразное изменение электрического поля, так сразу же к нему добавляется и магнитная волна. Разделить эту пару волн невозможно — это единое электромагнитное явление.

Можно и дальше уточнять описание, постепенно избавляясь от неточностей и грубых приближений. Если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Но давайте остановимся на полпути, потому что для нас пока важно лишь качественное понимание вопроса, а все основные моменты уже ясны из нашей модели. Главный из них — независимость распространения электромагнитной волны от ее источника.

В самом деле, волны электрического и магнитного полей, хотя и возникли благодаря колебаниям заряда, но вдали от него распространяются совершенно самостоятельно. Что бы ни случилось с зарядом-источником, сигнал об этом не догонит уходящую электромагнитную волну — ведь он будет распространяться не быстрее света. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические явления наряду с зарядами, которые их порождают.

Читайте также:  Природные зоны тихого океана кратко

Источник

Природа и свойства электромагнитного излучения

Спектроскопическими называются методы анализа, в которых качественно и количественно измеряется взаимодействие электромагнитного излучения с веществом.

Природа и свойства электромагнитного излучения

Электромагнитное излучение имеет двойственную природу и обладает как волновыми, так и корпускулярными (дискретными) свойствами.

Электромагнитная волна состоит из двух компонентов — электрического и магнитного, которые перпендикулярны друг другу и к направлению движения волны (рис.19.1). В отличие от других волновых процессов, например, звуковых волн для распространения электромагнитного излучения не нужна проводящая среда

Рис. 19.1. Электромагнитная волна

Электромагнитная волна, как и любая волна, обладает следующими основными параметрами.

Длина волны (l) — расстояние, которое проходит волна за один период её колебаний (расстояние между двумя последовательными максимумами).

Длина волны измеряется в метрах (м). На практике обычно используют кратные единицы — нанометр (1 нм = 1×10 -9 м) или микрометр (1 мкм = 1×10 -6 м).

Частота (n)- число колебаний в 1 секунду.

Частота измеряется в герцах (1Гц = 1 с -1 ) или в кратных ему единицах, например, 1МГц = 1×10 6 Гц. Длина волны и частота колебаний связаны между собой следующим уравнением

где с — скорость распространения волны в данной среде.

Для электромагнитной волны

где с0 — скорость света в вакууме (2,99792×10 8 м/с), n — показатель преломления среды.

Частота является более фундаментальной характеристикой, чем длина волны. Она зависит только от свойств источника излучения и не зависит от свойств среды. Длина волны зависит от природы среды, температуры и давления.

Волновое числочисло волн, приходящихся на 1 см в вакууме.

Электромагнитное излучение можно рассматривать как поток частиц энергии — фотонов. Связь между волновой и корпускулярной природой электромагнитного излучения устанавливает уравнение Планка:

Читайте также:  Природные зоны характеристику растительности

где h — постоянная Планка (h = 6,6262×10 -34 Дж×с)

Единицей измерения энергии является Джоуль (Дж). В спектроскопии часто используют внесистемную единицу — электрон-вольт (1эВ = 1,6022×10 -19 Дж). Чем больше длина волны электромагнитного излучения (меньше частота колебаний), тем меньше его энергия.

Совокупность всех энергий (длин волн, частот) электромагнитного излучения называется электромагнитным спектром.

В спектроскопических методах анализа спектром (спектром поглощения, спектром испускания) называется зависимость между энергией кванта и числом квантов, обладающих данной энергией (рис 19.2).

Рис. 19.2. Спектр (поглощения, испускания) в спектроскопических методах анализа

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Оцените статью