Урок 56 Тема: электронная природа химической связи. Понятие об электроотрицательности
Цель : ознакомить учащихся с электронной природе химической связи, причинами его возникновения; дать понятие об электроотрицательности химических элементов и выяснить ее изменения в периодах и группах; закрепить знания об электронной структуре атомов.
Оборудование: ПСХЭ, таблицы «строение атомов химических элементов І-ІІІ периодов», » электроотрицательность атомов химических элементов”
Формы проведения: лекция, беседа, работа учащихся с таблицами
ИИ. Объявление темы и цели урока
III. Актуализация опорных знаний. Беседа по вопросам
Приглашаем к доске одного ученика и предлагаем записать строение атомов Неона и Аргона с электронными схемами, формулами и распределением электронов по энергетическим ячейкам.( Этим самым мы вновь повторим строение атомов и такие понятия как спаренные и неспаренные электроны).
• Какие свойства проявляют инертные элементы?
• Строение внешнего электронного слоя инертных элементов?
• В чем причина именно таких свойств инертных элементов?
* Какие электроны называют спаренными, а какие неспаренными?
* Как изменяется радиус атома в периодах и группах?
IV. Мотивация учебной деятельности
В ходе беседы мы выяснили, что все химические элементы , кроме инертных, имеют незавершенные электронные слои. В процессе образования химических связей атомы химических элементов пытаются завершить их и образовать устойчивую восьмиелек-
тронное строение внешнего электронного слоя. Итак, сегодня на уроке мы должны выяснить принципы завершения внешнего электронного слоя.
Также мы познакомимся с таким понятием как электроотрицательности и ее изменением в периодах и группах.
V. изучение нового материала
1) электронная природа химической связи.
На основе таблиц объясняем, как атомы химических элементов завершают свои внешние электронные слои. Обращаем внимание на то, что у неметаллических элементов на внешнем слое 4 и более электронов. Неметаллическим элементам энергетически не выгодно отдавать свои внешние электроны, а потому они присоединяют электроны к 8 и образуют устойчивый октет. В металлических элементов на внешнем электронном слое наоборот небольшое количество электронов от 1 до 3, и поэтому металлические элементы отдают свои внешние электроны . На предпоследнем электронном слое у них также есть устойчивый октет электронов. То есть делаем вывод , что в образовании химических связей непосредственное участие будут принимать электроны внешнего слоя.
2) понятие об электроотрицательности.
Сначала даем определение „ электроотрицательности” и выясняем ,что это понятие тесно связано с понятием „ радиус атома”: электроотрицательности будет тем больше , чем меньше радиус атома.
В начале урока мы повторили понятие о радиусе атома и выяснили , как он меняется в периодах и группах. Теперь выясняем как будет меняться электроотрицательность в периодах и группах. Предлагаем ученикам самим сделать вывод об изменении электроотрицательности. Ученики должны понять, что ,если радиус атома в периодах уменьшается , то электроотрицательности увеличивается. В группах наоборот сверху вниз радиус атома увеличивается, следовательно электроотрицательности уменьшается.
Предлагаем ученикам, пользуясь этой схемкой, выяснить какой элемент наиболее, а какой наименее электроотрицательный.
VI. Закрепление изученного. „ Почемучка”
* Почему возникает химическая связь?
* Почему неметаллические элементы преимущественно присоединяют электроны?
* Почему металлические элементы всегда отдают электроны?
* Почему электроотрицательность в периодах увеличивается?
* Почему электроотрицательность в группах уменьшается?
• Почему Фтора наиболее , а Франций наименее электроотрицательным?
VII. Подведение итогов урока.
Источник
Атомы и электроны
Мы приступаем к изучению химии — мира молекул и атомов. В этой статье мы рассмотрим базисные понятия и разберемся с электронными формулами элементов.
Атом (греч. а — отриц. частица + tomos — отдел, греч. atomos — неделимый) — электронейтральная частица вещества микроскопических размеров и массы, состоящая из положительно заряженного ядра (протонов) и отрицательно заряженных электронов (электронные орбитали).
Описываемая модель атома называется «планетарной» и была предложена в 1913 году великими физиками: Нильсом Бором и Эрнестом Резерфордом
Протон (греч. protos — первый) — положительно заряженная (+1) элементарная частица, вместе с нейтронами образует ядра атомов элементов. Нейтрон (лат. neuter — ни тот, ни другой) — нейтральная (0) элементарная частица, присутствующая в ядрах всех химических элементов, кроме водорода.
Электрон (греч. elektron — янтарь) — стабильная элементарная частица с отрицательным электрическим зарядом (-1), заряд атома — порядковый номер в таблице Менделеева — равен числу электронов (и, соответственно, протонов).
Запомните, что в невозбужденном состоянии атом содержит одинаковое число электронов и протонов. Так у кальция (порядковый номер 20) в ядре находится 20 протонов, а вокруг ядра на электронных орбиталях 20 электронов.
Я еще раз подчеркну эту важную деталь. На данном этапе будет отлично, если вы запомните простое правило: порядковый номер элемента = числу электронов. Это наиболее важно для практического применения и изучения следующей темы.
Электронная конфигурация атома
Электроны атома находятся в непрерывном движении вокруг ядра. Энергия электронов отличается друг от друга, в соответствии с этим электроны занимают различные энергетические уровни.
Состоит из s-подуровня: одной «1s» ячейки, в которой помещаются 2 электрона (заполненный электронами — 1s 2 )
Состоит из s-подуровня: одной «s» ячейки (2s 2 ) и p-подуровня: трех «p» ячеек (2p 6 ), на которых помещается 6 электронов
Состоит из s-подуровня: одной «s» ячейки (3s 2 ), p-подуровня: трех «p» ячеек (3p 6 ) и d-подуровня: пяти «d» ячеек (3d 10 ), в которых помещается 10 электронов
Состоит из s-подуровня: одной «s» ячейки (4s 2 ), p-подуровня: трех «p» ячеек (4p 6 ), d-подуровня: пяти «d» ячеек (4d 10 ) и f-подуровня: семи «f» ячеек (4f 14 ), на которых помещается 14 электронов
Зная теорию об энергетических уровнях и порядковый номер элемента из таблицы Менделеева, вы должны расположить определенное число электронов, начиная от уровня с наименьшей энергией и заканчивая к уровнем с наибольшей. Чуть ниже вы увидите несколько примеров, а также узнаете об исключении, которое только подтверждает данные правила.
Подуровни: «s», «p» и «d», которые мы только что обсудили, имеют в определенную конфигурацию в пространстве. По этим подуровням, или атомным орбиталям, движутся электроны, создавая определенный «рисунок».
S-орбиталь похожа на сферу, p-орбиталь напоминает песочные часы, d-орбиталь — клеверный лист.
Правила заполнения электронных орбиталей и примеры
- Сперва следует заполнить орбитали с наименьшей энергией, и только после переходить к энергетически более высоким
- На орбитали (в одной «ячейке») не может располагаться более двух электронов
- Орбитали заполняются электронами так: сначала в каждую ячейку помещают по одному электрону, после чего орбитали дополняются еще одним электроном с противоположным направлением
- Порядок заполнения орбиталей: 1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p → 6s
Должно быть, вы обратили внимание на некоторое несоответствие: после 3p подуровня следует переход к 4s, хотя логично было бы заполнить до конца 4s подуровень. Однако природа распорядилась иначе.
Запомните, что, только заполнив 4s подуровень двумя электронами, можно переходить к 3d подуровню.
Без практики теория мертва, так что приступает к тренировке. Нам нужно составить электронную конфигурацию атомов углерода и серы. Для начала определим их порядковый номер, который подскажет нам число их электронов. У углерода — 6, у серы — 16.
Теперь мы располагаем указанное количество электронов на энергетических уровнях, руководствуясь правилами заполнения.
Обращаю ваше особе внимание: на 2p-подуровне углерода мы расположили 2 электрона в разные ячейки, следуя одному из правил. А на 3p-подуровне у серы электронов оказалось много, поэтому сначала мы расположили 3 электрона по отдельным ячейкам, а оставшимся одним электроном дополнили первую ячейку.
Внешний уровень и валентные электроны
Неспаренные валентные электроны способны к образованию химической связи. Их число соответствует количеству связей, которые данный атом может образовать с другими атомами. Таким образом неспаренные валентные электроны тесно связаны с валентностью — способностью атомов образовывать определенное число химических связей.
- Углерод — 2s 2 2p 2 (2 неспаренных валентных электрона)
- Сера -3s 2 3p 4 (2 неспаренных валентных электрона)
Тренировка
Потренируйтесь и сами составьте электронную конфигурацию для магния и скандия. Определите число электронов на внешнем (валентном) уровне и число неспаренных электронов. Ниже будет дано наглядное объяснение этой задаче.
- Магний — 1s 2 2s 2 2p 6 3s 2
- Скандий — 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1
Блиц-опрос по теме Атомы и электроны
Источник