Генетическую природу трансформирующего агента открыла группа ученых

Лабораторный журнал

В 1868 году швейцарский исследователь Ф. Мишер впервые выделил из ядер лейкоцитов человека соединения нового типа, ранее неизвестные, которые он назвал нуклеинами (от лат. nucleus – ядро). Вскоре сотрудники лаборатории Ф. Гоппе-Зейлера, в которой работал Ф. Мишер, в том числе и наш соотечественник Н. Любавин, выделили нуклеины из эритроцитов птиц, рептилий, из дрожжевых клеток и ряда других объектов. Позднее Ф. Мишер установил, что нуклеин – это сложное соединение, состоящее из кислого компонента с высоким содержанием фосфора (в 1889 году этот компонент назвали нуклеиновой кислотой) и белкового компонента. Так были открыты нуклеиновые кислоты и новая группа сложных белков, содержащая их, – нуклеопротеины. Долгое время считали, что белковые компоненты нуклеопротеинов представлены только белками основного характера – гистонами и протаминами. В 1939 году одним из основателей молекулярной биологии в СССР академиком А.Н. Белозерским и его сотрудниками в растительных нуклеопротеинах были обнаружены кислые белки типа альбуминов и глобулинов.

К середине 80-ых годов XIX века нуклеин был найден в составе хромосом, в связи с чем сформировались первые представления о его важной роли в передаче наследственных свойств. Однако позднее эти представления не получили развития, передачу наследственных свойств стали связывать с молекулами белка. Только в 40-50-ых годах XX века были получены экспериментальные доказательства важнейшей роли дезоксирибонуклеиновой кислоты – ДНК в явлениях наследственности у микроорганизмов. Первое доказательство принадлежит О. Эвери, К. Мак-Леоду и М. Мак-Карти, определившим в 1944 году химическую природу трансформирующего агента.

Явление генетической трансформации было открыто Ф. Гриффитсом в 1928 году. Он сумел перенести свойство патогенности от одного штамма пневмококка Diplococcus pneumoniae другому штамму, заражая мышей смесью живых клеток непатогенного штамма и убитых клеток патогенного штамма. О. Эвери и его сотрудники показали, что свойство патогенности можно передать, используя ДНК, выделенную из убитых клеток. В настоящее время вяление трансформации широко используют для генетического анализа у бактерий. Установлено, что можно осуществить также трансформацию клеток высших организмов.

Вторым важным доказательством генетической роли ДНК было выяснение механизма размножения бактериофага T 2 в клетках E . coli . В 1952 году А. Херши и М. Чейз показали, что ДНК бактериофага проникает внутрь бактериальной клетки и вводит туда «программу» для синтеза новых фаговых частиц. Подавляющая часть белка бактериофага остается на поверхности бактериальной клетки. Таким образом, именно ДНК, а не белок отвечает за передачу наследственной информации у бактерий и бактериофагов.

Читайте также:  Гбу со природный парк бажовские места

Свидетельства генетической роли ДНК для клеток высших организмов привели в 1949 году Г. Рис и А. Мирский. Они установили, что количество ДНК в клетке данного организма всегда постоянно в расчете на гаплоидных хромосомный набор и изменяется строго пропорционально изменениям плоидности.

Таким образом было доказано, что нуклеиновые кислоты – это важнейший компонент всех живых организмов. Всех живых клеток. С участием нуклеиновых кислот происходит образование белков, являющихся материальной основой всех жизненных процессов. Каждый живой организм содержит свои специфические белки, которыми он отличается от других организмов. Информация, определяющая особенности структуры белков, «записана» в ДНК и передается в ряду поколений молекулами ДНК.

Нуклеиновые кислоты другого типа – рибонуклеиновые кислоты (РНК) – являются обязательными и первостепенными участниками самого механизма биосинтеза белков. В связи с этим организм содержит РНК особенного много в тех тканях, в которых интенсивно образуются белки. Активное участие РНК в биосинтезе белков определяет их важное значение в процессе морфогенеза, поскольку без интенсивного синтеза белков немыслимо появление любого органа. В процессе эмбрионального развития до стадии гаструляции прирост содержания РНК у эмбриона идет медленно. Начало морфогенеза совпадает с резким повышением количества РНК, особенно в тех участках, где образуются органы. Самым высоким содержание РНК характеризуется дорсальная губа бластопора – «организатор» морфогенеза. Первостепенная роль РНК в биосинтезе белков объясняет и ее большое значение в процессе регенерации тканей и органов, для которого прежде всего необходимо новообразование белков.

Важность изучения нуклеиновых кислот и нуклеопротеинов определяется также тем, что вирусы являются почти чистыми нуклеопротеинами. Борьба с многочисленными вирусными заболеваниями невозможна без глубокого знания строения и свойств нуклеиновых кислот. Особый интерес представляет выяснение причин заболевания раком и методов лечения этой болезни, в основе которой лежит нарушение нормального функционирования нуклеиновых кислот и белков клетки, что очень часто связано с воздействием вирусов.

Следует, наконец, иметь ввиду, что мономерные звенья нуклеиновых кислот – нуклеотиды – играют самостоятельную важную роль в метаболизме: некоторые из них – коферменты, другие – аккумуляторы энергии в клетке, третьи – циклические нуклеотиды – регуляторы обмена веществ.

Источник

Приложение 2. Доказательства генетической роли нуклеиновой кислоты

История изучения нуклеиновых кислот начинается с 1869 г., когда швейцарский химик Ф.Мишер обнаружил в клеточном ядре осо­бые вещества, обладающие свойствами кислот. Он дал им название нуклеиновых кислот (от лат. пис1еиз — ядро). В опытах английского бактериолога Ф.Гриффитса (1928) была продемонстрирована способность пневмококков к трансформации, было выдвинуто предположение о том, что «транс­формирующий агент», отождествляемый с «веществом наследствен­ности», находится в ядре. Суть эксперимента Гриффитса заключа­лась в следующем. При введении мышам непатогенных штаммов пневмококков (рис. 1.) животные не заболевали (Б). При введе­нии патогенных штаммов мыши гибли (А), однако при введении патогенных микробов, убитых нагреванием, мыши оставались здо­ровыми (В). Гриффитс показал, что при одновременном введении живых непатогенных и убитых патогенных микробов мыши погибали (Г). Гриффитс заключил, что живые микробы непатогенного штамма в присутствии клеток штамма патогенного приобретают наследственно закрепленные свойства патогенности (трансформируются). В последующем было доказано, что трансформация происходит не только в живом организме, но и in vitro, т.е. в пробирке. Следующее замечательное открытие принадлежит О. Эвери, К.МакЛеод и М.МакКарти, которые в 1944 г. точно определили химическую природу «трансформирующего агента» и идентифицировали его как дезоксирибонуклеиновую кислоту. Чистая ДНК, выделенная из клеток патогенного штамма, при добавлении в кулътуру непатогенных клеток

Читайте также:  Антонимы понятия явлений природы

Рис. 1. Схема эксперимента Ф. Гриффитса.

трансформировала последние, придавая им свойства патогенности. Это новое свойство передавалось при дальнейшем размножении. При обработке трансформирующе­го агента специфическими веществами, разрушающими ДНК, трансформация не осуществлялась. Таким образом, было получе­но прямое доказательство генетической роли ДНК. Еще одним шагом в доказательстве генетической роли нуклеиновой кислоты является открытие правила эквивалентности, согласно которому в ДНК, выделенных из организмов различных видов, соотношение пуриновых и пиримидиновых оснований всегда одно и то же и составляет 1:1. Второе доказательство роли ДНК в передаче наследственной информации получили Н. Зиндер и Дж. Ледерберг. В 1952 г. они описали явление трансдукции. Они взяли U-образную трубку, между коленами которой находился антибактериальный фильтр. В одно колено поместили бактерии, способные синтезировать триптофан лизогенным бактериофагом, а в другое – триптофан не синтезирующий штамм. Через некоторое время в первом колене погибли все бактерии, а во втором штамм неспособный к синтезу триптофана получил эту способность. То есть произошла трасдукция – способность бактериофагов переносить фрагменты ДНК от одного штамма бактерий к другому и передавать соответствующие свойства. К началу 50-х гг. было получено множество данных (на различ­ных объектах), свидетельствующих об универсальности ДНК как носителя генетической информации. Вирусы, как было сказано ранее, имеют относительно простое строение: они состоят из бел­ковой оболочки, содержащей атомы серы, и заключенной внутри нее молекулы нуклеиновой кислоты, содержащей атомы фосфора. В 1952 г. А. Херши и М. Чейз проводили эксперименты с бактерио­фагом Т2 — особым видом вируса, убивающим зараженную бакте­риальную клетку (отсюда и название «бактериофаг», т.е. пожира­тель бактерии). Бактериофаг, проникая в кишечную палочку, быстро в ней размножается. Экспериментаторы размножали бактериофаги в клетках Е. coli, которые росли на двух различных средах: на среде, содержащей радиоактивный изо­топ серы ( 35 S), и на среде, содержащей радиоактивный изотоп фосфора ( 32 Р). Фаги, которые размножились на клетках, выросших на среде с радиоактивным изотопом серы, включали 35 S только в свои белковые оболочки. Фаги, размножившиеся на клетках, ко­торые выросли на среде с радиоактивным фосфором, содержали ДНК, меченную 32 Р. Затем полученными бактериофагами заража­ли клетки Е. соli, выращенные на обычной среде. Через короткое время эти клетки интенсивно встряхивали, чтобы отделить бакте­риофаги от стенок Е. coli. Затем делали анализ бактерии на наличие радиоактивности. Оказалось, что бактерии, зараженные фагами, выросшими на 35 S, не содержали радиоактивной метки, в то вре­мя как бактерии, зараженные фагами, размножившимися на 32 Р, были радиоактивными. Полученные результаты позволили авторам сделать два принципиальных вывода: 1) в бактериальную клетку проникает только фаговая ДНК, которая, размножаясь в клетке Е. соli, дает начало многочисленному потомству; 2) наследствен­ным материалом является ДНК, которая определяет не только струк­туру и свойства ДНК потомства, но и свойства фаговых белков. В 1953 г. Дж.Уотсон и Ф. Крик на основании результатов рентгеноструктурного анализа и биохимических данных предложили про­странственную модель структуры ДНК, объясняющую все ее свой­ства. Согласно предложенной модели молекула ДНК состоит из двух комплементарных (соответствующих) нитей. М. Мезельсон и Ф. Сталь доказали полуконсервативный механизм репликации (удвоения) ДНК. Выяснение структуры и функции нуклеиновых кислот позво­лило понять, каким образом живые организмы воспроизводят себя и как осуществляются кодирование генетической информации, ее хранение и реализация, необходимые для протекания всех жизненных процессов. К настоящему времени существенным образом обогащены знания о структуре и функции ДНК, значительно расширены возможности для исследований. Было обнаружено, что ДНК может как повреждаться, так и восстанавливаться, что молекулы ДНК мо­гут обмениваться друг с другом частями, закручиваться и раскру­чиваться. Было показано, что ДНК служит матрицей для синтеза РНК, а также сама способна синтезироваться в процессе обратной транскрипции с РНК. ДНК функционирует не только в ядре, но и в митохондриях. В настоящее время исследователи способны опре­делять последовательность нуклеиновых оснований в ДНК и осу­ществлять ее синтез.

Читайте также:  Shattered pixel dungeon сандалии природы

Источник

Оцените статью