- Глюкагон гормон белковой природы
- Глюкагон и глюконеогенез. Регуляция секреции глюкагона
- Регуляция секреции глюкагона
- Видео физиология гормонов поджелудочной железы и регуляции уровня глюкозы — профессор, д.м.н. П.Е. Умрюхин
- 3.2. Глюкагон: химическая природа, регуляция секреции, механизм действия, роль в обмене.
- Глюкагон гормон белковой природы
- Глюкагон. Физиологические эффекты глюкагона. Основные эффекты глюкагона.
Глюкагон гормон белковой природы
Глюкагон и глюконеогенез. Регуляция секреции глюкагона
а) Глюкагон увеличивает глюконеогенез. После опустошения глюкагоном депо гликогена в печени на фоне дальнейшего введения глюкагона можно наблюдать параллельно развивающуюся гипергликемию. Это является результатом повышения поступления аминокислот в клетки печени под влиянием глюкагона с последующим превращением их в глюкозу в результате глюконеогенеза. Этот эффект достигается активацией множества ферментов, необходимых для транспорта аминокислот и глюконеогенеза, в особенности ферментных систем, превращающих пируват в фосфоенолпируват, что является лимитирующим скорость этапом глюконеогенеза.
б) Прочие влияния глюкагона. Большинство других влияний глюкагона обнаруживается, когда его концентрация в крови превысит максимальную величину. Возможно, одним из наиболее важных влияний глюкагона является активация липазы в жировых клетках, обеспечивающая повышение количества свободных жирных кислот, которые могут быть использованы в процессах энергообеспечения организма. Глюкагон также препятствует запасанию триглицеридов в печени, что предупреждает изъятие жирных кислот гепатоцитами из крови. Это делает их более доступными для других тканей организма.
Глюкагон в очень высокой концентрации также:
(1) повышает теплообразование;
(2) увеличивает кровоток в некоторых тканях, особенно в почках;
(3) увеличивает секрецию желчи;
(4) тормозит секрецию соляной кислоты в желудке. Возможно, что все эти влияния не имеют существенного значения в условиях нормального функционирования организма.
Приблизительная концентрация глюкагона при различных уровнях глюкозы в крови
Регуляция секреции глюкагона
а) Концентрация глюкозы в крови является наиболее значимым фактором, контролирующим продукцию глюкагона. Однако специально подчеркнем характер влияний концентрации глюкозы в крови на продукцию глюкагона прямо противоположен влияниям этого фактора на секрецию инсулина.
На рисунке выше показано, что снижение концентрации глюкозы в крови от уровня, сопутствующего состоянию натощак, т.е. 90 мг/дл крови, до уровня, характеризующего гипогликемию, может способствовать увеличению концентрации глюкагона в плазме в несколько раз. Напротив, увеличение концентрации глюкозы в крови до гипергликемических значений сопровождается снижением концентрации глюкагона в плазме. Таким образом, при гипогликемии глюкагон секретируется в большем количестве, что в дальнейшем вызывает повышение выхода глюкозы из печени и поэтому является важным средством компенсации гипогликемии.
б) Увеличение аминокислот в крови стимулирует продукцию глюкагона. Высокая концентрация аминокислот в крови, которая возникает после приема белковой пищи (особенно аминокислот аланина и аргинина), стимулирует секрецию глюкагона. Это влияние аналогично тому, которое оказывали аминокислоты на продукцию инсулина. Таким образом, возникающие в этом случае изменения секреции глюкагона и инсулина не носят разнона правленного характера. Важность стимуляции аминокислотами продукции глюкагона заключается в том, что глюкагон обеспечивает быстрое превращение аминокислот в глюкозу, повышая количество глюкозы, доступной для тканей.
в) Физические нагрузки стимулируют секрецию глюкагона. На фоне истощающих физических нагрузок концентрация глюкагона в крови увеличивается в 4-5 раз. Непонятно, чем это провоцируется, т.к. концентрация глюкозы в крови при этом может не снижаться. Благотворность влияния глюкагона в этой ситуации заключается в том, что он препятствует снижению уровня глюкозы в крови.
Одним из факторов, который может увеличить продукцию глюкагона в этих условиях, является увеличение циркулирующих в крови аминокислот. Наряду с этим, возможно, вносит свою лепту адренергическая стимуляция островков Лангерганса.
Видео физиология гормонов поджелудочной железы и регуляции уровня глюкозы — профессор, д.м.н. П.Е. Умрюхин
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Источник
3.2. Глюкагон: химическая природа, регуляция секреции, механизм действия, роль в обмене.
Глюкагон представляет собой гормон полипептидной природы, выделяемый a-клетками поджелудочной железы. Основной функцией этого гормона является поддержание энергетического гомеостаза организма за счет мобилизации эндогенных энергетических ресурсов, этим объясняется его суммарный катаболический эффект.
В состав полипептидной цепи глюкагона входит 29 аминокислотных остатков, его молекулярная масса 4200, в его составе отсутствует цистеин. Глюкагон был синтезирован химическим путем, чем была окончательно подтверждена его химическая структура.
Глюкагон образуется из препроглюкагона — пептида-предшественника, состоящего из 180 аминокислоти пяти доменов которые подвергаются раздельному процессингу (Bell et al., 1983). За N-концевым сигнальным пептидом в молекуле препроглюкагона следует глицентиноподобный панкреатический пептид затем идут аминокислотные последовательности глюкагона и глюкагоноподобных пептидов типов 1 и 2. Процессинг препроглюкагона осуществляется в несколько этапов и зависит от ткани, в которой он происходит. В результате из одного и того же препрогормона в а-клетках островков поджелудочной железы и в нейроэндокринных клетках кишечника (L-клетках) образуются разные пептиды. Глицентин, важнейший промежуточный продукт процессинга, состоит из N-концевого глицентиноподобного панкреатического пептида и С-концево-го глюкагона, разделенных между собой двумя остатками аргинина. Оксинтомодулин состоит из глюкагона и С-концевого гексапептида, тоже разделенных между собой двумя остатками аргинина.
Физиологическая роль пептидов — предшественников глюкагона не ясна, однако сложная регуляция процессинга препроглюкагона предполагает, что всем им должны быть присущи особые функции. В секреторных гранулах а-клеток островков поджелудочной железы различимы центральное ядро из глюкагона и периферический ободок из глицентина. В L-клетках кишечника секреторные гранулы содержат только глицентин; по-видимому, эти клетки лишены фермента, который превращает глицентин в глюкагон. Оксинтомодулин связывается с рецепторами глюкагона на гепатоцитах и стимулирует аденилатциклазу; активность этого пептида составляет 10—20% активности глюкагона. Глюкагоноподобный пептид типа 1 — чрезвычайно сильный стимулятор секреции инсулина, но он не оказывает почти никакого действия на гепатоциты. Глицентин, оксинтомодулин и глюкагоноподобные пептиды обнаруживаются преимущественно в кишечнике. Их секреция продолжается и после панкреатэктомии.
Регулируемым параметром в контуре регуляции секреции глюкагона является концентрация глюкозы. Уменьшение ее в крови стимулирует альфа-клетки, которые увеличивают секрецию гормона, что приводит к росту концентрации глюкозы, которая путем отрицательной обратной связи уменьшает секрецию глюкагона.
Увеличение секреции глюкагона вызывает повышение концентрации аминокислот в крови (особенно аргинина) холецистокинина, катехоламинов, ацетилхолина. Уменьшение секреции глюкагона возникает при увеличении: концентрации глюкозы в крови, инсулина, соматостатина, жирных кислот и кетонов.
Глюкагон для гепатоцитов служит внешним сигналом о необходимости выделения в кровь глюкозы за счёт распада гликогена (гликогенолиза) или синтеза глюкозы из других веществ — глюконеогенеза (этот процесс будет изложен позднее). Гормон связывается с рецептором на плазматической мембране и активирует при посредничестве G-белка аденилатциклазу, которая катализирует образование цАМФ из АТФ (см. раздел 5). Далее следует каскад реакций, приводящий в печени к активации гликогенфосфорилазы и ингибированию гликогенсинтазы (рис. 7-29). Этот механизм приводит к высвобождению из гликогена глюкозо-1-фосфата, который превращается в глюкозо-6-фосфат. Затем под влиянием глюкозо-6-фосфатазы образуется свободная глюкоза, способная выйти из клетки в кровь. Таким образом, глюкагон в печени, стимулируя распад гликогена, способствует поддержанию глюкозы в крови на постоянном уровне.
1 — глюкагон и адреналин взаимодействуют со специфическими мембранными рецепторами. Комплекс гормон-рецептор влияет на конформацию G-белка, вызывая диссоциацию его на протомеры и замену в α-субъединице ГДФ на ГТФ; 2 — α-субъединица, связанная с ГТФ, активирует аденилатциклазу, катализирующую синтез цАМФ из АТФ; 3 — в присутствии цАМФ протеинкиназа А (цАМФ-зависимая) обратимо диссоциирует, освобождая обладающие каталитической активностью субъединицы С; 4 — протеинкиназа А фосфорилирует и активирует киназу фосфорилазы; 5 — киназа фосфорилазы фосфорилирует гликогенфосфорилазу, переводя её в активную форму; 6-протеинкиназа А фосфорилирует также гликогенсинтазу, переводя её в неактивное состояние; 7 — в результате ингибирования гликогенсинтазы и активации гликогенфосфорилазы гликоген включается в процесс распада; 8 — фосфодиэсте-раза катализирует распад цАМФ и тем самым прерывает действие гормонального сигнала. Комплекс ос-субъединица-ГТФ затем распадается, α-, β- и γ-субъединицы G-белка реассоциируются.
Глюкагон увеличивает содержание глюкозы (способствует гипергликемии) в плазме крови. Этот эффект реализуется несколькими путями.
Стимуляция гликогенолиза. Глюкагон, активируя гликоген фосфорилазу и ингибируя гликоген синтазу в гепатоцитах, приводит к быстрому и выраженному распаду гликогена и освобождению глюкозы в кровь.
Подавление гликолиза. Глюкагон ингибирует ключевые ферменты гликолиза (фосфофруктокиназа, пируваткиназа) в печени, что приводит к содержания глюкозо-6-фосфата в гепатоцитах, его дефосфорилированию и освобождению глюкозы в кровь.
Стимуляция глюконеогенеза. Глюкагон усиливает транспорт АК из крови в гепатоциты и одновременно активирует ключевые ферменты глюконеогенеза (пируваткарбоксилаза. Фруктозо01,6-дифосфатаза), что приводи к содержания глюкозы в цитоплазме клеток и её поступлению в кровь.
Глюкагон способствует образованию кетоновых тел путем стимуляции окисления жирных кислот: ингибирование активности ацетил-КоА-карбоксилазы приводит к ↓ содержания ингибитора карнитин ацилтрансферазы – малонил-КоА, что приводит к усиленному поступлению жирных кислот из цитоплазмы в митохондрии для их β-окисления и превращения в кетокислоты. Другими словами, в отличие от инсулина, глюкагон оказывает кетогенный эффект.
Источник
Глюкагон гормон белковой природы
Глюкагон. Физиологические эффекты глюкагона. Основные эффекты глюкагона.
Глюкагон является мощным контринсулярным гормоном и его эффекты реализуются в тканях через систему вторичного посредника аденилатциклаза—цАМФ. В отличие от инсулина, глюкагон повышает уровень сахара крови, в связи с чем его называют гипергликемическим гормоном.
Рис. 6.21. Функциональная организация островков Лангерганса как «мини-органа». Сплошные стрелки — стимуляция, пунктирные — подавление гормональных секретов. Ведущий регулятор — глюкоза — при участии кальция стимулирует секрецию инсулина р-клетками и, напротив, тормозит секрецию глюкагона альфа-клетками. Всасывающиеся в желудке и кишечнике аминокислоты являются стимуляторами функции всех клеточных элементов «мини-органа». Ведущий «внутриорганный» ингибитор секреции инсулина и глюкагона — соматостатин, активация его секреции происходит под влиянием всасывающихся в кишечнике аминокислот и гастроинтестинальных гормонов при участии ионов Са2+. Глюкагон является стимулятором секреции как соматостатина, так и инсулина.
Основные эффекты глюкагона проявляются в следующих сдвигах метаболизма в организме:
• активация гликогенолиза в печени и мышцах;
• активация глюконеогенеза;
• активация липолиза и подавление синтеза жира в адипоцитах;
• повышение синтеза кетоновых тел в печени и угнетение их окисления;
• стимуляция катаболизма белков в клетках тканей, прежде всего печени, и увеличение синтеза в ней мочевины.
Образующиеся в островках Лангерганса гастрин и панкреатический полипептид основную роль играют в регуляции процессов пищеварения, их эффекты и физиологическая роль рассмотрены в соответствующей главе.
Источник