- Какова природа силы поверхностного натяжения? Какова природа силы поверхностного натяжения?
- Природа поверхностного натяжения и его характеристики
- Поверхностное натяжение
- Понятие и характеристики поверхностного натяжения
- Поверхностное натяжение некоторых жидкостей на границе с воздухом
- Пример решения задачи
- Важность поверхностного натяжения
Какова природа силы поверхностного натяжения? Какова природа силы поверхностного натяжения?
Между любыми молекулами в жидкости существует притяжение. Если молекула расположена в объеме жидкости, то силы притяжения, действующие на нее со стороны окружающих молекул (а силы — это векторы) взаимно компенсируются, и равнодействующая равна нулю. Если молекула расположена на поверхности жидкости, то равнодействующая сил притяжения со стороны других молекул жидкости не равна нулю, и она направлена внутрь объема. В газовой фазе тоже есть молекулы, но количество их в таком же объеме в сотни раз меньше, и равнодействующая их сил притяжения хоть и направлена вне жидкости, но она гораздо меньше, чем равнодействующая со стороны жидкости. В итоге, каждая молекула жидкости, находящаяся на поверхности жидкости как бы «затягивается внутрь жидкости. Но все молекулы не могут находиться внутри объема, какие-то непременно находятся на поверхности. Чтобы сумма сил, затягивающих все такие молекулы внутрь объема жидкости была минимальна, жидкость стремится уменьшить свою поверхность. А минимальной поверхностью при заданном объеме обладает шар, поэтому любая жидкость, предоставленная сама себе, когда на нее не действуют другие силы, стремится принять форму шара. В невесомости это так и происходит. В условиях гравитации сила тяжести стремится «раскатать» жидкость в тонкую пленку, но при этом поверхность ее значительно увеличивается. Силы поверхностного натяжения, наоборот, стремятся «скатать» жидкость в шар. Поэтому жидкость на твердой (несмачиваемой) поверхности имеет форму приплюснутого шара.
Некоторая аналогия — поведение выводка щенят, когда они без мамы спят на холоде. Щенкам, находящимся с краю, холодно, и они стремятся пролезть внутрь кучки.
Источник
Природа поверхностного натяжения и его характеристики
Молекулы жидкости в объёме и на её свободной поверхности находятся в неэквивалентных условиях (см. рис 3.1).
Каждая молекула испытывает притяжение со стороны всех соседних молекул, находящихся в пределах сферы молекулярного действия радиусом r 0, центр которой совпадает с данной молекулой. Равнодействующая всех сил для молекул в объеме жидкости (при r >2 r 0) в среднем равна нулю. В приповерхностной области (при r < r о) окружение каждой молекулы несимметрично и действие соседних молекул не скомпенсировано. Таким образом, на каждую молекулу, находящуюся в приповерхностном слое толщины ~ r 0 действует результирующая сила f, направленная в объем жидкости. Под действием этой силы молекулы совершают более частые переходы в объем. Поэтому в приповерхностном слое концентрация молекул ниже, чем в объеме. Этот слой оказывается как бы растянутым, обладает дополнительной потенциальной (упругой) энергией и ведет себя подобно резиновой пленке, для молекул это означает, что они должны совершить работу против равнодействующей силы f, чтобы перейти из объема в приповерхностный слой.
Макроскопической удельной характеристикой избыточной энергии поверхностного слоя является коэффициент поверхностного натяжения – это его энергетическое определение
где – работа, затраченная на увеличение свободной поверхности жидкости (поверхностного слоя) на площадь . Работа идет на увеличение энергии поверхностного слоя, т. е. . Поэтому из определения коэффициента σ следует, что энергия поверхностного натяжения пленки площадью равна:
Всякая физическая система в состоянии равновесия стремится к минимуму потенциальной энергии. Поэтому, например, капля жидкости в состоянии свободного падения принимает форму шара, мыльный пузырь имеет сферическую форму и т. д., т. к. сфера имеет минимальную площадь поверхности при заданном объеме.
Стремление поверхностного слоя к сокращению приводит к тому, что на границе слоя действует сила. Если на границу пленки жидкости длиной действует сила Δ F, то при перемещении перпендикулярно границе на расстояние совершается работа . С другой стороны ,а – изменение площади пленки. Из сравнения этих работ силовое определение коэффициента поверхностного натяжения
где Δ F – сила, действующая на границу пленки жидкости длиной .
Обратное соотношение позволяет рассчитывать силу поверхностного натяжения
Необходимо помнить, что это соотношение справедливо для прямолинейного участка границы пленки. Для. криволинейных границ пленки силы Δ F нужно суммировать или в пределе при производить криволинейное интегрирование.
Другое важное следствие действия поверхностного натяжения состоит в том, что под искривлённой поверхностью жидкости создаётся избыточное давление . Согласно формуле Лапласа его величина
где R1 и R2 – радиусы кривизны пленки жидкости в данной точке. Они определяются сечениями поверхности взаимно перпендикулярными плоскостями (см. рис. 3.2) и могут быть как положительными, так отрицательными. Например, для капли жидкости R1=R2=R – радиусу капли и .
Значения коэффициента поверхностного натяжения для некоторыхжидкостей приведены в, таблице 3.1.
Таблица 3.1 – Коэффициенты поверхностного натяжения
№ п/п | Жидкость (20ºС) | Коэффициент |
1 | Бензин | 21 |
2 | Бензол | 41,5 |
3 | Вода | 72,75 |
4 | Мыльный раствор | 40 |
5 | Нефть | 30 |
6 | Спирт этиловый | 22,0 |
7 | Ртуть | 513 |
8 | Фреон-12 | 9,0 |
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник
Поверхностное натяжение
Почему мыльные пузыри круглые, а водомерки не тонут? Все это следствия одного и того же физического явления, без которого вода не была бы водой.
Понятие и характеристики поверхностного натяжения
С явлением поверхностного натяжения жидкости мы сталкиваемся каждый день:
- капли воды стремятся принять форму, близкую к шарообразной (а в невесомости они совсем шарообразные);
- струя воды из-под крана стремится к цилиндрической форме;
- булавка не тонет на поверхности воды в стакане;
- многие насекомые могут скользить по поверхности воды.
Силы поверхностного натяжения действуют вдоль поверхности жидкости, стремясь сократить ее площадь. Как будто жидкость заключена в упругую пленку, которая стремится сжать свое содержимое.
Потенциальная энергия взаимного притяжения молекул жидкости примерно равна их кинетической энергии. Это позволяет веществу сохранять объем (но не форму), и этот объем ограничивается поверхностью жидкости.
На молекулу жидкости, которая находится внутри, действуют силы притяжения со стороны других молекул, и они уравновешивают друг друга. А на ту молекулу, что находится на поверхности, действуют силы притяжения не только со стороны других молекул жидкости, но и со стороны газа (внешней среды). Эти вторые значительно меньше первых, поэтому равнодействующая сила притяжения направлена внутрь жидкости, что способствует удержанию молекулы на поверхности.
Поверхностное натяжение — это величина, которая показывает стремление жидкости сократить свою свободную поверхность, то есть уменьшить избыток своей потенциальной энергии на границе раздела с газообразной фазой.
Чем больше площадь поверхности жидкости, тем больше молекул, которые обладают избыточной потенциальной энергией, и тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:
Поверхностная энергия жидкости
W — поверхностная энергия жидкости [Дж]
S — площадь свободной поверхности [м 2 ]
σ — коэффициент поверхностного натяжения [Н/м]
Отсюда мы можем вывести формулу коэффициента поверхностного натяжения.
Коэффициент поверхностного натяжения — это физическая величина, которая характеризует данную жидкость и численно равна отношению поверхностной энергии к площади свободной поверхности жидкости.
Коэффициент поверхностного натяжения
W — поверхностная энергия жидкости [Дж]
S — площадь свободной поверхности [м 2 ]
σ — коэффициент поверхностного натяжения [Н/м]
Коэффициент поверхностного натяжения жидкости зависит:
- от природы жидкости;
- температуры жидкости;
- свойств газа, который граничит с данной жидкостью;
- наличия поверхностно-активных веществ (например, мыло или стиральный порошок), которые уменьшают поверхностное натяжение.
Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью.
Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как капля воды или мыльный пузырь. Так же ведет себя вода в невесомости. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения.
Сила поверхностного натяжения
F — сила поверхностного натяжения [Н]
l — длина контура, ограничивающего поверхность жидкости [м]
σ — коэффициент поверхностного натяжения [Н/м]
В химической промышленности в воду часто добавляют специальные реагенты-смачиватели, не дающие ей собираться в капли на какой-либо поверхности. Например, их добавляют в жидкие средства для посудомоечных машин. Попадая в поверхностный слой воды, молекулы таких реагентов заметно ослабляют силы поверхностного натяжения, вода не собирается в капли и не оставляет на поверхности пятен после высыхания.
Поверхностное натяжение некоторых жидкостей на границе с воздухом
Поверхностное натяжение, 10 −3 Н/м
Хлорид натрия (водный раствор)
Пример решения задачи
Тонкое алюминиевое кольцо радиусом 7,8 см соприкасается с мыльным раствором. Каким усилием можно оторвать кольцо от раствора? Температуру раствора считать комнатной. Масса кольца 7 г. Коэффициент поверхностного натяжения мыльного раствора при комнатной температуре равен 4 × 10 -2 Н/м.
На кольцо действуют сила тяжести, сила поверхностного натяжения и внешняя сила, с которой отрывают кольцо от раствора.
Так как кольцо соприкасается с раствором и внешней и внутренней сторонами, то сила поверхностного натяжения удваивается:
Контур, ограничивающий поверхность жидкости, имеет форму окружности. Значит, его длина будет равна:
Подставляем в формулу силы поверхностного натяжения:
Условие отрыва кольца от поверхности раствора имеет вид второго закона Ньютона для инерциальных систем отсчета:
Подставляем силу поверхностного натяжения:
F = 0,007 × 10 + 4 × 4 × 10 -2 × 3,14 × 7,8 × 10 -2 = 0,11 Н
Ответ: Для того, чтобы оторвать кольцо от раствора, необходимо приложить силу в 0,11 Н.
Важность поверхностного натяжения
Выше мы уже показали, что поверхностное натяжение встречается в повседневной жизни достаточно часто. Но на самом деле оно встречается еще чаще!
В некоторых отраслях промышленности поверхностное натяжение используют как простой показатель загрязнения продуктов. Поскольку оно определяется на молекулярном уровне, любое изменение компонентов вещества может привести к изменению этого показателя. То есть если мы знаем, каким должно быть поверхностное натяжение совершенно чистого вещества, то по отклонению от этой нормы мы можем установить уровень его загрязнения.
Не только человек, но и представители живой природы используют физические явления в своих целях. Например, за счет поверхностного натяжения насекомые водомерки могут перемещаться по водной глади, не промочив лапки. Конечности водомерки отталкивают воду и захватывают воздух, что позволяет насекомым продавливать поверхность воды, не нарушая ее.
За счет поверхностного натяжения возникает такое любопытное явление, как ламинарное течение. Это упорядоченный режим течения вязкой жидкости или газа, при котором соседние слои жидкости не перемешиваются. Выглядит ламинарная струя так, как будто вода застыла.
И это еще не все: поверхностное натяжение позволяет предметам плавать, благодаря ему выживают и развиваются экосистемы, и даже состав воды стабилен только за счет этого явления. Без него вода бы постоянно находилась на границе двух агрегатных состояний: испарялась и вновь конденсировалась, так как молекулы легко выскакивали бы с ее поверхности.
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Бесплатный курс для современных мам и пап от детского психолога Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков
Источник