Бета излучение, возникающее при радиационном процессе, занимает умы ученых не меньше, чем другие виды.
Уже довольно длительное время изучается его воздействие на человеческий организм.
Полезно оно или вредно, и как от него защититься? Следует более подробно рассмотреть все свойства такого излучения.
Какова физическая природа бета излучения? Как оно возникает, и какие частицы присутствуют в нем? Эти вопросы интересовали многих ученых, поэтому сразу после открытия существования таких лучей, они занялись их изучением.
Илучение представляет собой поток нейтронов или электронов, появляющийся в результате распада атомов. В этот момент происходит превращение одного элемента в другой. При этом все изменения проходят внутри ядра, что ведет к изменению электрона или нейтрона. Какая именно частица будет в излучении, зависит от вида превращения.
Поток таких лучей развивает скорость, приближающуюся к скорости света. По своему значению она доходит до трехсот тысяч километров в секунду.
В отличие от альфа, бета ионизирует вещество во много раз слабее. Зато проникающая способность у него, наоборот, довольно высокая. Оно довольно легко проникает через одежду, в живую ткань. Однако лист из металла уже является сложной преградой и может полностью задержать частицы.
Бета излучение может нанести вред живому организму даже с расстояния в десятки метров от источника. Негативное его действие заключается в том, что проникая в организм человека, оно начинает там накапливаться, постепенно оказывая неблагоприятное воздействие на клетки, разрушая и повреждая их. Кроме того, некоторые бета частицы обладают довольно длинным периодом распада. Поэтому задерживаются в человеческом теле надолго, подвергая его длительному негативному влиянию. В результате клетки постепенно перерождаются, возможно возникновение различных опухолей.
Каким образом излучение возникает? Естественные источники таких лучей в принципе отсутствуют в виду того, что кроме них они излучают еще и другие виды частиц. Бета излучение проникает из космоса, трещин в земной поверхности (там, где присутствуют радиоактивные элементы), но везде оно не единственное, а в совокупности с другими видами излучения.
Что касается искусственных источников, то, как правило, скопление таких частиц возникает в результате техногенных катастроф.
Но есть и сферы применения бета излучения, когда такой вид лучей продуцируют специально.
Способность β-лучей проникать через живые ткани нашла свое применение в медицине. Их используют для терапии онкологических заболеваний.
Помимо этого, beta излучение используется в различных химических процессах, археологии и геологии, контроле автоматических процессов.
Каким же образом бета излучение влияет на человеческий организм? Что в нем происходит под действием таких лучей?
В виду способности проникать в кожные покровы, бета излучение, попадая на них, становится причиной довольно сильных ожогов. При этом чем длиннее период нахождения под лучами, тем сильнее будет ожог. Особенно это касается открытых участков тела и слизистых оболочек.
Однако гораздо хуже, когда β-частицы проникают внутрь организма. Как и при любом другом виде излучения, сначала происходит повреждение клеток, а затем они просто погибают. При этом образуются токсические вещества, которые оказывают губительное влияние на весь организм в целом. Итогом может стать летальный исход.
При получении небольшой дозы облучения человек может сразу и не заметить негативных симптомов, однако бета частицы имеют свойство накапливаться в организме и разрушать его постепенно. Более того, некоторые из них распадаются довольно долгое время, и весь этот период негативно влияют на организм.
Вопрос о том, как защититься от бета излучения, интересует многих людей. Особенно тех, кто работает с приборами, создающими его.
Для того, чтобы себя обезопасить, необходимо соблюдать определенные меры.
Таким образом, защита состоит в правильном соблюдении техники безопасности и вовремя принятых мерах. Существуют определенные нормы содержания бета лучей в окружающей среде. Для их определения используется дозиметр.
Он представляет собой устройство, способное распознать альфа, бета, гамма излучение в окружающей среде (как по отдельности, так и в совокупности в зависимости от модели). Существует также детектор мягкого бета излучения.
Дело в том, такой вид лучей распознать сложнее, так оно обладает меньшей энергией, поэтому в этом устройстве используются тонкие окошки из слюды или полимерной пленки, чтобы облегчить проникновение бета лучей.
При превышении нормы излучения, необходимо покинуть территорию и принять меры предосторожности.
Бета излучение считается более опасным, нежели альфа. Следует соблюдать определенные правила, если профессиональная деятельность человека связана с излучателями таких частиц. Влияние их на организм довольно серьезно, вызывает негативные последствия и может стать причиной летального исхода. Для определения наличия бета излучения можно применять дозиметр.
Источник
Один из видов радиоактивного излучения, существующего в природе, — бета-излучение. Познакомимся с этим видом радиоактивности, с природой бета-лучей, с механизмом их возникновения.
После открытия радиоактивности в конце XIX в. многие физики стали изучать природу и свойства радиоактивного излучения. Одним из таких физиков был Э. Резерфорд. В 1899 г. он поставил опыт по определению состава радиоактивного излучения.
В свинцовом контейнере находится радиоактивный препарат (как правило, соль радия). Через окно в контейнере радиоактивное излучение попадает на фотопластинку. Как и в опытах других физиков, на пластинке появлялась засвеченная область. Теперь, если на пути радиоактивного луча поместить сильное магнитное поле и если радиоактивный луч состоит из заряженных частиц, засвеченная область на фотопластинке сдвинется в сторону.
Опыт показал, что радиоактивное излучение имеет сложный состав. На фотопластинке после включения магнитного поля возникли три пятна. Это доказывало, что в радиоактивных лучах присутствуют частицы всех трех видов: тяжелые положительные, легкие отрицательные и нейтральные (неизвестного веса).
Положительная компонента радиоактивного излучения была названа альфа-лучами, отрицательная — бета-лучами, нейтральная — гамма-лучами.
Бета-лучи сильно отклонялись в магнитном поле, следовательно, массы их были невелики. Измеряя степень отклонения бета-лучей магнитным полем с известной индукцией, установили, что эти лучи — не что иное, как поток электронов, движущихся с высокими скоростями.
В дальнейшем выяснилось, что бета-лучи — это результат действия особого, слабого взаимодействия, в результате которого нейтрон распадается на протон, электрон и антинейтрино. Порядковый номер элемента в периодической таблице Менделеева увеличивается на единицу, а массовое число остается прежним (протон и нейтрон весят практически одинаково).
Все эти обстоятельства и определяют свойства бета-излучения.
Исходя из квантового характера испускания частиц, спектр энергии бета-лучей должен быть линейчатым (как, например, спектр альфа-частиц). В рамках развивавшейся в то время квантовой теории непрерывность реального бета-спектра была необъяснима, поскольку она нарушала закон сохранения энергии. Поэтому В. Паули в 1930 г. выдвинул предположение, что часть энергии уносится частицей, очень слабо взаимодействующей с веществом. Этой частицей оказалось антинейтрино, зарегистрированное экспериментально в 1956 г. — частица, подтвердившая существование особого, слабого фундаментального взаимодействия.
Бета излучение — это поток электронов, вылетающих с высокими скоростями из ядер при радиоактивном распаде. Этот распад происходит в результате особого, слабого взаимодействия. Бета-частицы имеют непрерывный энергетический спектр из-за того, что часть энергии уносится легкой безмассовой частицей антинейтрино.
Источник