Какую природу имеет сила упругости

9. Силы упругости: природа сил упругости; виды упругих деформаций; закон Гука.

Силы упругости- силы, возникающие при его упругой деформации и направленные против направления смещения частиц тела, вызываемой деформацией.

, где k- коэффициент жесткости, х-удлинение(деформация тела). Единица измерения- ньютоны/метр.

Закон Гука: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Сила упругости имеет электромагнитную природу и во многом определяется электростатическим взаимодействием.

37. Вынужденные электромагнитные колебания.

Вынужденными электромагнитными колебаниями называют периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника.

Переменный электрический ток — электрический ток, периодически изменяющий свое направление в цепи так, что среднее значение силы тока за период равно нулю.

Внешним источником ЭДС в электрических цепях являются генераторы переменного тока, работающие на электростанциях.

Устройство генератора

  1. Статор – неподвижная часть генератора
  2. Ротор – подвижная часть генератора
  3. Индуктор – создает магнитное поле

Простейшая модель генератора – рамка, вращающаяся в однородном магнитном поле. Поток магнитной индукции пронизывает рамку.

Ф=B*S*cosφ

φ=ω*t; Ф=B*S*cosω*t

Определим ЭДС:

E=B*S*ω*sinω*t

ЭДС индукции изменяется по гармоническому закону

Ei=E0*sinω*t

U=U0* cos(ω*t+φ), где φ-сдвиг фаз

Сдвиг фаз определяется по амплитуде состояния колебательной системы в любой момент времени.

В промышленности и в быту используется ток с частотой 50Гц, это означает, что за 1с меняет направление 50 раз.

Характеристики переменного тока:

i, u, e мгновенные значения переменного тока

I0, U0, E0 максимальные значения

I, U, E действительные значения

Рассмотрим процессы, происходящие в цепи, подключенной к источнику переменного напряжения

  1. Активное сопротивление:RA – сопротивление элемента в электрической цепи, в котором электрическая энергия необратимо преобразуется во внутреннюю.

Iмамплитуда, Iм=Uм/RA

Колебания силы тока совпадают по фазе с колебаниями напряжения

За счет изменения магнитной индукции на катушке возникает индукционный ток, возникает самоиндукция, за счет этого и появляется дополнительное сопротивление

3. Емкостное RRc – возникает, когда есть конденсатор в цепи

Если в такую цепь подать постоянный ток, то цепь будет разомкнута, т.к. между пластинами диэлектрик. При переменном токе происходит перезарядка конденсатора, за счет этого и появляется дополнительное сопротивление

Фазы колебаний, силы тока, напряжения совпадают только при активном сопротивлении, при емкостном и индуктивном существует сдвиг фаз на π/2.

Фаза – величина, стоящая под знаком синуса или косинуса, она определяет по данной амплитуде состояние колебательной системы в любой момент времени.

Читайте также:  Иркутское отделение всероссийского общества охраны природы

Источник

Сила упругости

Сила упругости всегда является результатом деформации тела. Данная сила всегда пытается вернуть деформированное тело в исходное положение. Что же такое сила упругости, и при каких условиях она возникает?

Общая характеристика силы упругости

Сила упругости возникает при деформации тел, например, при растяжении или сжатии пружины. Деформация – это изменение формы и размеров тела.

Сила упругости при деформации пружины

Если исчезнет деформация тела, то сила упругости тоже исчезнет

Причиной возникновения сил упругости являются силы притяжения и отталкивания между частицами (молекулами или атомами), из которых состоят все тела. Если слегка увеличить расстояние между частицами, то силы взаимодействия оказываются силами притяжения между ними. Если же расстояние между частицами немного уменьшить, они становятся силами отталкивания. Сила упругости, действующая на тело, связана с деформацией тела следующим образом:

где F упр. – модуль силы упругости, х – удлинение тела (расстояние, на которое изменяется первоначальная длина тела), k – коэффициент пропорциональности, называемый жесткостью пружины, измеряемый в Н/м. Данная формула силы упругости служит выражением закона Гука. Определение закона Гука выражается следующим образом: сила упругости, возникающая при деформации тела, пропорциональна удлинению тела и направлена противоположно перемещению частиц тела относительно других частиц при деформации.

Формула закон Гука

Прямую пропорциональную зависимость между силой упругости и удлинением используют в динамометрах – приборах для измерения силы. Силы упругости работают в технике и природе: в часовых механизмах, в амортизаторах на транспорте, в канатах и тросах, в человеческих костях и мышцах.

Свойства силы упругости

К силам упругости относятся сила реакции опоры и веса тела. Сила реакции (N) со стороны опоры на тело возникает, когда тело кладут на какую-нибудь поверхность (опору).

Силы упругости имеет ряд особенностей:

  • возникают при деформации
  • возникают одновременно у двух тел
  • перпендикулярны поверхности
  • противоположны по направлению смещению.

Вес тела (P) – это сила, с которой тело действует на горизонтальную опору или вертикальный подвес, вследствие своего притяжения к Земле.

Вес тела обозначается буквой P и измеряется в Ньютонах.

Если опора тела горизонтальна и неподвижна, то вес такого тела численно равен силе тяжести, действующей на это тело и равен P=mg

Если же тело движется вверх с ускорением а, то вес этого тела больше веса покоящегося тела и равен $P=(g+a)m$

А если же тело с ускорением а движется вниз, то его вес $P =(g-a)m$

При равенстве ускорения тела и ускорения свободного падения вес тела равен нулю. Это состояние невесомости.

Таблица сравнение силы упругости с другими силами

Что мы узнали?

Тема «Сила упругости» является важным этапом в познании физики как науки. Силы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации. Сила упругости не существует без деформации тела. Также к силам упругости относятся сила реакции опоры и веса тела.

Источник

Задачи на тему «Сила упругости. Закон Гука» с решениями

Задачи на тему «Сила упругости. Закон Гука» с решениями

Можно не знать закон Ома и сидеть дома. Но если не знаешь закон Гука – лучше тоже не выходить. Особенно, если идешь на экзамен по физике.

Читайте также:  Группы неживой природы 2 класс

Здесь устраняем пробелы в знаниях и разбираемся, как решать задачи на силу упругости и применение закона Гука. А за полезной рассылкой для студентов добро пожаловать на наш телеграм-канал.

Сила упругости и закон Гука: определения

Сила упругости – сила, препятствующая деформациям и стремящаяся восстановить первоначальные форму и размеры тела.

Примеры действия силы упругости:

  • пружины сжимаются и разжимаются в матрасе;
  • мокрое белье колышется на натянутой веревке;
  • лучник натягивает тетиву, чтобы выпустить стрелу.

Деформация, возникающая в упругом теле под действием внешней силы, пропорциональна величине этой силы.

Сила упругости и закон Гука: определения

Коэффициент k – жесткость материала.

Есть и другая формулировка закона Гука. Введем понятие относительной деформации «эпсилон» и напряжения материала «сигма»:

Сила упругости и закон Гука: определения

S – площадь поперечного сечения деформируемого тела. Тогда закон Гука запишется так: относительная деформация пропорциональна напряжению.

Сила упругости и закон Гука: определения

Здесь Е – модуль Юнга, зависящий от свойств материала.

Закон Гука был экспериментально открыт в 1660 году англичанином Робертом Гуком.

Вопросы на силу упругости и закон Гука

Вопрос 1. Какие бывают деформации?

Ответ. Помимо простейших деформаций растяжения и сжатия, бывают сложные деформации кручения и изгиба. Также разделяют обратимые и необратимые деформации.

Вопрос 2. В каких случаях закон Гука справедлив для упругих стержней?

Ответ. Для упругих стержней (в отличие от эластичных тел) закон Гука можно применять при малых деформациях, когда величина эпсилон не превышает 1%. При больших деформациях возникают явления текучести и необратимого разрушения материала.

Вопрос 3. Как направлена сила упругости?

Ответ. Сила упругости направлена в сторону, противоположную направлению перемещения частиц тела при деформации.

Вопрос 4. Какую природу имеет сила упругости?

Ответ. Сила упругости, как и сила трения – электромагнитная сила. Она возникает вследствие взаимодействия между частицами деформируемого тела.

Вопрос 5. От чего зависит коэффициент жесткости k? Модуль Юнга E?

Ответ. Коэффициент жесткости зависит от материала тела, а также его формы и размеров. Модуль Юнга зависит только от свойств материала тела.

Задачи на силу упругости и закон Гука с решениями

Кстати! Для наших читателей действует скидка 10% на любой вид работы.

Задача №1. Расчет силы упругости

Один конец проволоки жестко закреплен. С какой силой нужно тянуть за второй конец, чтобы растянуть проволоку на 5 мм? Жесткость проволоки известна и равна 2*10^6 Н/м2.

Задача №1. Расчет силы упругости

По третьему закону Ньютона:

Задача №1. Расчет силы упругости

Ответ: 10 кН.

Задача №2. Нахождение жесткости пружины

Пружину, жесткость которой 100 Н/м, разрезали на две части. Чему равна жесткость каждой пружины?

Задача №2. Нахождение жесткости пружины

По определению, жесткость обратно-пропорциональна длине. При одинаковой силе F неразрезанная пружина растянется на х, а разрезанная – на x1=x/2.

Задача №2. Нахождение жесткости пружины

Ответ: 200 Н/м

При растяжении пружины в ее витках возникают сложные деформации кручения и изгиба, однако мы не учитываем их при решении задач.

Задача №3. Нахождение ускорения тела

Тело массой 2 кг тянут по гладкой горизонтальной поверхности с помощью пружины, которая при движении растянулась на 2 см. Жесткость пружины 200 Н/м. Определить ускорение, с которым движется тело.

Читайте также:  Динамика понятия природные ресурсы

Задача №3. Нахождение ускорения тела

За силу, которая приложена к телу и заставляет его двигаться, можно принять силу упругости. По второму закону Ньютона и по закону Гука:

Задача №3. Нахождение ускорения тела

Ответ: 2 м/с^2.

Задача №4. Нахождение жесткости пружины по графику

На графике изображена зависимость модуля силы упругости от удлинения пружины. Найти жесткость пружины.

Задача №4. Нахождение жесткости пружины по графику

Вспоминаем, что жесткость равна отношению силы и удлинения. Представленная зависимость – линейная. В любой точке прямой отношение ординаты F и абсциссы х дает результат 10 Н/м.

Ответ: k=10 Н/м.

Задача №5. Определение энергии деформации

Для сжатия пружины на х1=2 см надо приложить силу 10 Н. Определить энергию упругой деформации пружины при сжатии на х2=4 см из недеформированного состояния.

Энергия сжатой пружины равна:

Задача №5. Определение энергии деформации

Ответ: 0,4 Дж.

Нужна помощь в решении задач? Обращайтесь за ней в профессиональный студенческий сервис.

Источник

Сила упругости. Закон Гука

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.

Сила упругости

Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε = x l . Напряжением в теле называется отношение σ = — F у п р S . Здесь S — площадь поперечного сечения деформированного тела. Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению.

Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E ≈ 2 · 10 11 Н м 2 , а для резины E ≈ 2 · 10 6 Н м 2

Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня.

Закон Гука

Концы стержня лежат на двух опорах, которые действуют на тело с силой N → , называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения.

Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает.

Вес тела — это сила, с которой оно действует на опору.

Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого — динамаметр.

Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.

При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k ).

В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.

Источник

Оцените статью