Круговорот фосфора в природе
Фосфор – относительно редкий элемент. По данным академика А.Е.Ферсмана, его весовой кларк (процентное содержание элемента в земле) равен всего 0,12%.
В свободном виде в природе по причине своей очень сильной окисляемости он не встречается, но входит в состав многих минералов (их насчитывается до 120) и множества органических веществ. Большинство минералов, содержащих фосфор, являются редкими. Наиболее важные минералы (природные фосфаты) – апатит, вивианит, а также осадочная горная порода фосфорит, состоящая из мелкокристаллического или аморфного фосфата кальция с примесью некоторых других веществ.
Источником всех фосфорных соединений в природе следует признать апатит – фосфат кальция, содержащий переменное количество фтора и хлора. В зависимости от преобладания в апатите фтора или хлора образуются минералы фторапатит Са5F(РO4)3 или хлорапатит Са5Сl(PO4)3. Они содержат от 5 до 36% P2O5.
В изверженных породах обычно всегда есть мелкие кристаллики апатита. Главнейшие его запасы находятся в зоне магмы, но он встречается и в тех местах, где изверженные породы образуют контакт с осадочными. Значительные запасы апатитов имеются в Норвегии и Бразилии. Подлинно мировое месторождение апатитов находится на Кольском полуострове, в Хибинах, где оно было открыто в 1925 г.(рис.5).
Рис. 5. Мировое месторождение апатитов находится в Хибинах
Под влиянием жизнедеятельности микроорганизмов, почвенных кислот, а также кислот, выделяемых корнями растений, апатиты вовлекаются в биохимический круговорот, который в отличие от круговорота азота, углерода, кислорода и серы ограничивается лишь био-, гидро- и литосферой и не захватывает атмосферы.
Растениями фосфор поглощается только из растворенных фосфатов в виде анионов фосфорной кислоты. Поэтому питание фосфором растений возможно лишь при наличии в почвенном растворе солей фосфорной кислоты, например Са(Н2РО4)2, СаНРО4, К2НРО4 и др. Скапливается он главным образом в продуктовых частях – семенах, плодах. Наиболее богаты фосфором бобовые растения, а бедны им овощи. Из растений фосфор вместе с пищей попадает в организм животных и человека. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где снова подвергаются воздействию микроорганизмов и превращаются в минеральные формы, употребляемые зелёными растениями.
В наземных системах круговорот фосфора проходит в оптимальных естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это связано с постоянным оседанием (седиментацией) органических веществ. Осевший на небольшой глубине органический фосфор возвращается в круговорот. Фосфаты, отложенные на больших морских глубинах не участвуют в малом круговороте. Однако тектонические движения способствуют подъёму осадочных пород к поверхности.
Таким образом фосфор медленно перемещается из фосфатных месторождений на суше
и мелководных океанических осадков к живым организмам и обратно (рис. 6).
Рис.6. Схема круговорота фосфора
Несмотря на свою малую распространенность и разбросанность, фосфор, однако, имеет исключительно важное значение в жизни растительных и животных организмов. Он является один из основных компонентов (главным образом в виде и ) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК), клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ), жиров, костей и зубов.
В теле человека имеется свыше 1,5 кг фосфора (1,4 кг в костях, 130 г в мышечных и 12 г в нервных тканях). Ежесуточная потребность взрослого человека в фосфоре от 1 до 1,2 г.
Больше всего его содержится в костях (свыше 5%). Твердость скелету придает кальциевая соль фосфорной кислоты. Очень много фосфора в зубах (в дентине – 13%, а в зубной эмали – 17%). Физиологические процессы, протекающие в животном организме, постоянно связаны с химическими превращениями фосфорсодержащих веществ (расщепление их в пищеварительных органах, синтез новых фосфорсодержащих органических соединений). Сложным изменениям подвергаются и минеральные фосфорные соединения в крови и печени.
Фосфор – биогенный элемент. Академик А.Е.Ферсман называл фосфор элементом жизни и мысли.
Таков круговорот и значение фосфора в природе. Крайне ядовитое и реакционноспособное вещество (в одной из его аллотропных форм – белом или желтом фосфоре) в своих соединениях является существенно необходимым элементом растительной и животной жизни.
В процесс круговорота фосфора, как и в природный круговорот других элементов (кислорода, азота, серы, калия, кальция, алюминия, железа и др.), энергично вмешивается человек. Фосфор нужен человеку для многих целей: большое количество его поглощает спичечная отрасль промышленности. Лучшие сорта нержавеющей стали получаются благодаря процессу фосфатирования – покрытия тонким слоем фосфатов, стойких против атмосферной коррозии. Аналогичной обработке часто подвергаются изделия из цинка, алюминия и их сплавов. Соединения фосфора идут на изготовление многих лекарственных веществ (рис.7)
Рис. 7. Некоторые области применения фосфора и его соединений
Главный же потребитель фосфатов – сельское хозяйство. Со времени химика Ю.Либиха земледельцы, поняв значение фосфора для повышения урожая культурных растений, начали отыскивать природные фосфаты (апатиты, фосфориты), превращать их механическим или чаще всего химическим путем в удобрения и вносить в почву.
Надо заметить, что в 100 кг пшеницы находится около 1 кг фосфора (в виде Р2О5). Столько же фосфора содержится в 200 кг сена, 300 кг соломы, 1500 кг зеленых кормов. Можно себе представить, какие громадные количества фосфора уносятся с наших полей вместе с урожаем. Часть его, конечно, возвращается в почву, но фосфор, например, содержащийся в продуктовых частях растений, идущих на промышленную переработку, пропадает. Не обладая бесконечными запасами фосфора, почва вследствие этого процесса постепенно истощается, что приводит к сильному снижению урожая и необходимости восполнения потери фосфора. Культурные растения в большинстве случаев очень благоприятно отзываются на внесение в почву фосфорных удобрений в легкоусвояемой форме.
Фосфорное удобрение получается также в качестве побочного продукта при переработке богатого фосфором чугуна в сталь при томасовском процессе. Если «грушу», в которой получается сталь по методу Г. Бессемера, выстлать внутри известковой футеровкой, то известь поглотит фосфор из расплавленного чугуна. В этом и состоит сущность предложенного англичанином С.Дж. Томасом процесса, при котором сразу достигаются две цели: получение доброкачественной стали и ценного удобрения. Последнее достигается путем размалывания поглотившей фосфор известковой футеровки. Получаемый таким путем сухой темно-серый порошок, называемый томасшлаком, содержит от 11 до 24% Р2О5 и является высокоэффективным удобрением, особенно на кислых почвах.
Источник
18. Круговорот фосфора в природе. Особенности круговорот фосфора в природе
Круговорот фосфора крайне медленный. Фосфор, находящийся в камнях и минералах (литосфере) под силами эрозии размывается и попадает в почву. Там он соединяется с различными веществами, например маленькими органическими частицами, ионами железа и становится пригодным для впитывания растениями. Фосфор также используется как удобрение для растений.
В животных и человека фосфор попадает вместе с пищей. Затем, когда животные,
растения умирают, то под действием редуцентов (грибов и бактерий) их тело разлагается на простые органические вещества и минералы. Тем самым высвобождается фосфор, который поступает обратно в почву.
Особенности: В природе не существует дополнительного поставщика фосфора.
Круговорот фосфора разомкнут – все идет через подземные воды в океан и накапливаются глубинные отложения. Многие соединения фосфора нерастворимы и происходит фосфотизация – накопление фосфора в недоступной для растений формы.
19. Основные отличия кругооборотов азота и фосфора?
- Круговорот азота замкнут, в отличие от круговорота фосфора, он разомкнут
- В природе нет дополнительного поставщика, а азот имеет резервный фонд элемента.
- Скорость круговорота азота выше, чем круговорота фосфора
- В круговороте фосфора отсутствует газовая фаза
20. Причины и меры борьбы с деградацией почв. Сохранение и восстановление почвы
- Упор на мелко- и среднемасштабное производство фруктов, овощей, различные породы животных. Отказ от монокультур.
- Использование местных биологических ресурсов
- Минеральные удобрения и пестициды использовать в минимальных количествах
- Использование альтернативной энергии
Источник
6. Биогеохимические циклы углерода, азота, фосфора
В биосфере происходит постоянный обмен химическими элементами между живыми организмами и абиотической средой.
Этот процесс называют биогеохимическим круговоротом, или биогеохимическим циклом. В нём главную роль играют живые организмы.
Химические элементы, необходимые для жизни, называют биогенными элементами, или питательными веществами. Выделяют две группы таких элементов:
- макротрофные элементы ( C , H , O , N , P , K , Ca , Mg , S ) входят в состав тканей организмов.
- микротрофные элементы, или микроэлементы, содержатся в живых организмах в небольших количествах. Это Fe , Mn , Cu , Zn , B , Na , Mo , Cl , V и Co .
Биогенные элементы участвуют в круговороте, поэтому используются живыми организмами многократно и никогда не заканчиваются.
Углерод — главный элемент органических соединений. Главное значение в круговороте углерода имеют растения. Углекислый газ, содержащийся в атмосфере или в воде (в растворённом виде), растения усваивают в процессе фотосинтеза и превращают в органические соединения.
Образованное растениями органическое вещество используется в пищу животными. Во всех живых организмах происходит дыхание — обратный процесс, возвращающий углекислый газ в атмосферу.
Многие организмы используют углеродные соединения для образования твёрдых частей тела — раковин и скелетов. Из остатков морских животных образовались осадочные породы (известняки).
Круговорот углерода замкнут не полностью. Углерод выводится из него в виде известняков и ископаемого топлива (торфа, угля, нефти, природного газа). При сжигании топлива углерод опять вовлекается в круговорот.
Азот входит в состав белков, нуклеиновых кислот, витаминов и других соединений. Основным источником азота служит атмосфера, в которой он находится в виде газа. В почву этот элемент поступает тремя путями. Некоторое количество азота превращается в доступную растениям нитратную форму при атмосферной фиксации (при разрядах молний). До недавнего времени основным путём поступления азота была биологическая фиксация некоторыми бактериями (например, клубеньковыми). В последнее столетие приблизительно такое же значение имеет промышленная фиксация.
Образовавшиеся в почве соединения азота (нитраты и соли аммония) используются растениями для синтеза белков, которые разлагаются редуцентами до мочевины и аммиака. Нитрифицирующие микроорганизмы затем превращают эти вещества в доступную для растений нитратную форму.
Замыкают круговорот денитрифицирующие бактерии, возвращающие азот в атмосферу. Схема циркуляции азота в биосфере представлена на рисунке.
Источником фосфора служат фосфатные горные породы, которые при разрушении или вымывании выделяют фосфаты в почву или воду. Эти соединения используются растениями для образования органических веществ (фосфолипидов, нуклеиновых кислот и др.). Остатки организмов разрушаются редуцентами, фосфаты опять оказываются в почве и могут использоваться растениями. Некоторая часть фосфатов попадает в водоёмы, где тоже поступает в пищевые цепи. Часть фосфора из моря может снова попасть на сушу в виде помёта морских птиц.
Источник