Математическое моделирование природных явлений

Математическое моделирование природных и общественных процессов

С помощью математического моделирования можно решать задачи в области географии: проводить классификацию, районирование, прогнозирование. Практически нет таких областей географии, где бы не строились математические модели различной сложности.

Процесс математического моделирования включает пять стадий: формализацию, реализацию, обработку модели, интерпретацию результатов, проверку. При формализации составляется географическая модель. При этом устанавливается цель исследования, определяются моделируемые свойства, способ идентификации и ограничения объема информации и измерения его свойств. Реализация (построение) модели предполагает выражение системы аксиом на выбранном языке. Обработка модели включает экспериментальные действие: анализ, разделение на подмодели, учет частных свойств, синтез. Интерпретация результатов состоит в том, что полученные в ходе обработки модели новые знания переносятся на оригинал. Проверка модели заключается в интерпретации результатов, анализе правильности преобразований, сопоставлении полученных результатов с реальными данными. Последнее положение относится к проверке эмпирической модели.

Математическое моделирование позволяет количественно выражать географические закономерности в виде различных моделей, которые дают возможность ответить на вопросы, почему именно так развивается система, что станет с ней при изменении обстановки. Модель позволяет также обнаружить недостатки эмпирических исследований, их слабые стороны.

Сложная математическая модель обычно строится географом совместно с математиком. Однако при этом явление упрощают, оставляя ведущие факторы и причины, которые выявляются с использованием статистического, корреляционного, факторного и других рассмотренных видов анализа. В процессе моделирования интуиция и опыт специалиста играют определяющую роль.

Специфика математической модели в географии заключается в моделировании как отдельных компонентов географической среды, так и комплекса элементов, составляющих ландшафт. Рассмотрим пример математического моделировании с использование простой модели.

Пример. Известно, что в результате ураганов ветровалу подвержены в большей степени древесные породы, имеющие поверхностную корневую систему (ель), породы с мягкой древесиной (береза, осина, липа), а также разреженный лесной массив. Это необходимо учитывать при искусственном возобновлении леса. Требуется найти общую характеристику, по которой можно было бы судить о защитных свойствах различных массивов леса, т. е. определить толщу леса, необходимую для защиты от ураганных ветров. Древесную толщу (Т) выражаем через показатели густоты леса ( N ) и толщины деревьев ( d ): T = N + d .

Процесс моделирования включает нахождение зависимости между древесной толщей и расстоянием от опушки леса (т. е. эпицентра урагана) L т, густотой леса и толщиной деревьев.

Читайте также:  Армения интересные места природа

При дальности видимости в лесу L в защитный слой в 1 см от эпицентра урагана будет образован на расстоянии, равном:

Для создания толщи леса (Т) потребуется расстояние

Определим дальность видимости в лесу:

Подставляя в формулу (11.2) значение Δ L из (11.1), а затем L в из (11.3), имеем

На основании этой формулы вычисляем расстояние L т, при котором образуется толща Т для различных N и d , т. е. для любого леса. Например, если лес имеет толщу деревьев d = 20 см, густоту N = 765 деревьев на 1 га при защитной толще Т = 25 см, то по формуле (11.4) вычисляем расстояние ( L т):

Аналогично рассчитываем защитную толщу на определенном расстоянии, подставляя различные по величине параметры в формулу (11.4).

Источник

Математическое моделирование природных явлений

В современных условиях при значительном росте используемых ресурсов и воздействии на окружающую среду, при огромном потоке информации, которую необходимо учитывать, традиционные эмпирические методы принятия решений обнаруживают свою ограниченность. Развитие сельского хозяйства и промышленности должно основываться на освоении новых методов управления и внедрения новейших технологий и использовании эффективных методов научных исследований. К таким эффективным методам следует отнести математизацию исследований.

Математизация исследований предполагает в первую очередь получение математической модели исследуемого процесса, достаточно точно, адекватно его описывающей. При наличии такой модели возникает возможность дальнейшее исследование процесса заменить анализом его математической модели для получения решения поставленных конкретных задач.

Агрономическая физика изучает физические, физико-химические и биофизические процессы в системе «почва – растение – деятельный слой атмосферы», основные закономерности продукционного процесса. Одним из возможных направлений в агрохимических исследованиях является экспериментальное изучение связей урожая со свойствами почв и удобрениями. Многочисленные исследования в этом направлении показали, что связь урожая со свойствами почв чрезвычайно сложная. Сложность обусловливается тем, что на продуктивность растений одновременно влияет ряд факторов – величины переменные, изменчивые как в пространстве, так и во времени. С внесением в почву минеральных и органических удобрений взаимосвязь между свойствами почв и урожаем сельхозкультур еще в большей степени усложняется, так как удобрения влияют как на продуктивность растений, так и на свойства самой почвы.

Читайте также:  Звуки природы чтобы расслабиться

Исследователь разрабатывает функциональную блок-схему явления. Эта модель завершается составлением некоторой схемы взаимосвязей между основными процессами. В результате полевых и лабораторных экспериментов выделяются физические параметры, формируется вид зависимости между изучаемыми блоками. На заключительном этапе исследования формируется математическая модель исследованных явлений во взаимосвязи с факторами внешней среды. Составленная модель дает возможность научно обоснованно управлять этими явлениями с учетом всех тех взаимосвязей, которые изучили агрофизики-теоретики и экспериментаторы на предыдущих этапах.

Применение математического моделирования предполагает:

— построение математических моделей для задач принятия решений и управления в сложных ситуациях или в условиях неопределенности;

— изучение взаимосвязей, определяющих возможные последствия принимаемых решений, а также установление критериев эффективности, позволяющих оценить преимущество того или иного варианта.

Чтобы совершенствовать управление системы, необходимо представить ее функционирование в целом с учетом имеющихся ресурсов. Достичь этого можно только с привлечением специальных средств, включающих в себя систему моделей и математического аппарата, который позволит провести анализ изучаемого процесса, увидеть последствия принимаемых решений, оценить возможности при различных альтернативах.

Техника исследований этих вопросов состоит в имитации на компьютере функционирования проектируемого или изучаемого комплекса с помощью специально организованных систем математических моделей. Методы и средства, обеспечивающие возможность реализации такого подхода, составляют основу системного анализа.

Современные масштабы мелиоративного строительства предопределяют значительные региональные изменения в гидрогеологических условиях, которые нередко влекут за собой и неблагоприятные воздействия на состояние сельскохозяйственных земель. Потому при проведении изысканий для обоснования мелиорации ставятся задачи изучения гидрогеологических условий объекта, прогноза их возможных изменений и выбора оптимальных мероприятий, предупреждающих ухудшение мелиоративной обстановки. Такой прогноз должен опираться на надежную количественную оценку процессов тепло- и массопереноса в ненасыщенных и насыщенных грунтах, которая может быть получена методами математического моделирования и вычислительного эксперимента.

Обычно процесс экспериментирования включает такие важные этапы, как постановка задачи, априорный анализ, эксперимент, интерпретация результатов. В каждый из этих этапов входит такой необходимый шаг, как принятие решений.

Всю совокупность имеющихся до начала эксперимента сведений принято называть априорной (доопытной) информацией. Априорный анализ позволяет уточнить постановку задачи и выбрать программу действия экспериментатора, учесть специфику решаемой задачи. Современная математическая теория требует, чтобы задача была формализована, т.е. надо однозначно сформулировать цель исследования, выделить переменные, значения которых определяют близость к поставленной цели, и установить соотношения между целью и переменными, принять ограничения и т.п.

Читайте также:  Климатические пояса природная зона саванна

Математическая модель – мощное средство обобщения разнородных данных об объекте, позволяющее осуществлять как интерполяцию (восстановление недостающей информации о прошлом), так и экстраполяцию (прогнозирование будущего поведения объекта).

Требования, предъявляемые моделью к математической завершенности описания, позволяют построить определенную концепцию и с ее помощью четко ограничить те области, где знание проблемы еще недостаточно, т.е. стимулируют возникновение новых идей и проведение экспериментальных исследований.

Математическое моделирование, с помощью которого можно получить ответ на тот или иной специальный вопрос, а также сделать обоснованный выбор из ряда альтернативных стратегий, дает возможность сократить объем продолжительных и дорогостоящих экспериментальных работ, выполнение которых было бы необходимым при отсутствии моделей.

Перечислим основные задачи мелиорации, решение которых должно быть получено на основе прогноза:

– количественное описание режима и химизма грунтовых вод, состава и запаса солей в почво-грунтах и динамики их до начала орошения;

– вычисление величин, характеризующих развитие во времени подъема уровня грунтовых вод;

– выбор оптимального режима промывок, если почвы засолены до орошения (сроков, норм и последовательности водоподачи для удаления солей из почвы);

– оптимального режима поливов, уменьшающих питание грунтовых вод, или способствующих нисходящим токам солей;

– выбор оптимального набора постоянных и временных дренажных сооружений;

– определение технических характеристик сооружений и объемов водоподачи и водоотвода для поддержания допустимых концентраций солей в почвах и грунтовых водах;

– анализ влияния системы на водно-солевой режим соседних территорий.

Итак, модели позволяют получать различные комбинации факторов, влияющих на урожайность культур, плодородие почвы, прогнозировать конечные результаты в зависимости от сочетания этих факторов, ставить эксперименты, которые часто невозможно осуществить в природных условиях средств. Эксперимент проводится не с системой, а с моделью, которая количественно описывает конкретную систему.

Источник

Оцените статью