Чаще всего в природе встречается последовательность Фибоначчи. Она начинается с чисел 1 и 1, а затем каждое последующее число получается путем сложения двух предыдущих чисел. Следовательно, после 1 и 1 следующее число — 2 (1 + 1). Следующее число — 3 (1 + 2), затем 5 (2 + 3) и так далее.
Спирали в растениях наблюдаются в расположении листьев на стебле, а также в структуре бутона и семян цветка — например, у подсолнуха или структуры плода ананаса и салака. Последовательность Фибоначчи можно заметить и у сосновой шишки, где огромное количество спиралей расположено по часовой и против часовой стрелки. Эти механизмы объясняются по-разному — математикой, физикой, химией, биологией. Каждое из объяснений верно само по себе, но необходимо учитывать их все .
С точки зрения физики, спирали — конфигураций низких энергий, которые возникают спонтанно путем самоорганизации процессов в динамических системах. С точки зрения химии, спираль может быть образована реакционно-диффузионным процессом с привлечением как активации, так и ингибирования. Филлотаксис контролируется протеинами, которые управляют концентрацией растительного гормона ауксина, который активирует рост среднего стебля наряду с другими механизмами контроля относительного угла расположения бутона к стеблю. С точки зрения биологии листья расположены настолько далеко друг от друга, насколько позволяет естественный отбор, так как он максимизирует доступ к ресурсам, особенно к солнечному свету, для фотосинтеза.
Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. Сам Фрактал — это самоподобная повторяющаяся форма, что означает, что одна и та же основная форма появляется снова и снова. Другими словами, если вы увеличите или уменьшите масштаб, везде будет видна одна и та же.
Эти самоподобные циклические математические конструкции, обладающие фрактальной размерностью, встречаются довольно часто, особенно среди растений. Самый известный пример — папоротник.
Кстати, бесконечная повторяемость невозможна в природе, поэтому все фрактальные закономерности — это только аппроксимации (приближения). Например, листья папоротников и некоторых зонтичных растений (например, тмин) являются самоподобными до второго, третьего или четвертого уровня.
Схожие с папоротником паттерны встречаются также у многих растений (брокколи, капуста сорта Романеско, кроны деревьев и листья растений, плод ананаса), животных (мшанки, кораллы, гидроидные, морские звезды, морские ежи). Также фрактальные паттерны имеют место в структуре разветвления кровеносных сосудов и бронхов животных и человека.
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» введен Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры.
При достаточной наблюдательности в живой природе легко обнаружить строгую геометрию. В особом почете оказываются гексагоны — правильные шестиугольники.
Например, соты, в которых пчелы хранят золотистый нектар, — это чудеса инженерного искусства, набор ячеек в форме призмы с правильным шестиугольником в основании. Толщина восковых стенок строго определена, ячейки немного отклоняются от горизонтали, чтобы вязкий мед не вытекал, и соты находятся в равновесии с учетом влияния магнитного поля Земли. А ведь эту конструкцию без чертежей и прогнозов строят множество пчел, которые одновременно работают и как-то координируют свои попытки сделать соты одинаковыми.
Если вы подуете на пузырьки на поверхности воды, чтобы согнать их вместе, то они приобретут форму шестиугольников — или, по крайней мере, приблизятся к ней. Вы никогда не увидите скопище квадратных пузырей: если даже четыре стенки соприкоснутся, они немедленно перестроятся в конструкцию с тремя сторонами, между которыми будут примерно равные углы в 120 градусов. Почему так происходит?
Пена — это множество пузырей. В природе существуют пенопласты из разных материалов. Пена, состоящая из мыльных пленок , подчиняется законам Плато, согласно которым три мыльные пленки соединяются под углом 120 градусов, а четыре грани соединяются в каждой вершине тетраэдра под углом 109,5 градусов. Затем по законам Плато требуется, чтобы пленки были гладкими и непрерывными, а также имели постоянную среднюю кривизну в каждой точке. Например, пленка может оставаться почти плоской в среднем, имея кривизну в одном направлении (например, слева направо), и в то же время искривляться в обратном направлении (например сверху вниз). Лорд Кельвин сформулировал задачу упаковки клеток одного объема наиболее эффективным способом в виде пены в 1887 году; его решение — кубическая сота со слабо изогнутыми гранями, удовлетворяющими законам плато. До 1993 года это решение оставалось лучшим, пока Денис Ваэрен и Роберт Фэлан не предложили структуру Ваэра-Фэлена . Впоследствии эта структура была адаптирована для внешней стены Пекинского национального плавательного комплекса, построенного для проведения летних Олимпийских игр 2008 года .
Природа озабочена экономией. Пузыри и мыльная пленка состоят из воды (и слоя мыльных молекул), и поверхностное натяжение сжимает поверхность жидкости таким образом, чтобы она занимала наименьшую площадь. Поэтому капли дождя при падении принимают форму, близкую к сферической: у сферы наименьшая площадь поверхности по сравнению с другими фигурами того же объема. На восковом листке капли воды сжимаются в маленькие бусинки по той же причине.
Поверхностное натяжение объясняет и тот узор, который образуют пузыри или пена. Пена стремится к такой конструкции, при которой общее поверхностное натяжение будет минимальным, а значит, минимальной должна быть и площадь мыльной мембраны. Но конфигурация стенок пузырей должна быть прочной и с точки зрения механики: натяжение в разных направлениях на «перекрестке» должно быть идеально сбалансировано (по тому же принципу нужен баланс при строительстве стен собора). Трехстороннее соединение в пленке из пузырьков и четырехстороннее — в пене — комбинации, которые достигают этого баланса.
Читать далее
Источник
Задания Д13 C13 № 1181
Структуру природы можно представить в виде схемы.
Прочитай текст и изобрази структуру неживой природы, включающее все перечисленные в тексте группы объектов. Впиши в прямоугольники на схеме названия групп объектов.
Природа — это все то, что нас окружает и все, что создано без участия человека. Тела неживой природы практически всегда остаются неизменными, статичными. Объектов неживой природы настолько много и они настолько разнообразны, что одна наука просо не в силах изучать их все. Этим занимается сразу несколько наук: химия, физика, геология, гидрография, астрономия. По одной из существующих классификаций все объекты неживой природы делятся на три большие группы:
Твердые тела. Сюда относятся все горные породы, минералы, вещества, составляющие почву, ледники и айсберги, планеты.
Жидкие тела — это все объекты неживой природы, находящиеся в состоянии текучести, не имеющие определенной формы. Например, вода, нефть, вулканическая лава.
Газообразные тела — все вещества, состоящие из газов: воздушные массы, водяной пар, болотный газ, звезды.
Космос тоже материален и является частью природы. Даже в вакууме есть молекулы и атомы. Их количество ничтожно мало, но они есть.
Заполним схему, использую информацию из текста.
Источник