Объясните природу явления дифракции

Дифракция света

Дифракция света — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.

Изначально под ней подразумевалось преломление световой волной препятствия. Однако сегодня данное толкование считается частичным. С более подробным изучением передвижения волны света под дифракцией стали подразумеваться разнообразные формы распространения света в неоднородной среде. Это может быть, как огибание препятствия, так и преломление волны из-за него. Кроме того, свет может переходить от точки к точке постепенно. Это образует криволинейный волновой пучок, что связано не с дифракцией, а с геометрической оптикой.

Таким образом, в волновой теории под дифракцией понимается любое отклонение от норм геометрической оптики. Суть процесса заключается в том, что свет при входе в геометрическую тень огибает препятствие.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Где применяется, принцип Гюйгенса – Френеля

Впервые процесс распространения света был подробно представлен в работах Гюйгенса .

Принцип Гюйгенса заключается в следующем: все, что находится по близости распространения света, является причиной появления новых сферических волн. Сформированные волны рассеиваются от встретившейся точки во всех направлениях, как от излучаемого свет центра. В результате этого происходит их наложение друг на друга.

Теория Гюйгенса была дополнена Френелем. Ученый доказал, что полученная от столкновения с препятствием волна является реальной. В комплексе они интерферируют, то есть взаимодействуют друг с другом. От этого становятся сильнее, что позволяет им распространяться не только вперед, но и назад. Во время движения назад происходит контакт с первоисточником. В результате чего начинается угасание всех световых волн.

Получается, что вторичные волны усиливаются при направлении вперед, а в местах ослабления будут заметны темные участки пространства.

В подобных случаях очевидно появление дифракции на отверстии, поскольку волна огибает его края по направлению к области геометрической тени. Это объясняется тем, что отверстие вырезает светящийся диск, соразмерный его диаметру. Дальнейшее световое поле — это процесс взаимодействия волны вторичных источников, полученных на диске отверстия. В результате этого ход лучей искривляется, поскольку искривленная волна рассеивается в разных направлениях, что не совпадает с первоначальным движением.

Качество волны света, возникшей от разных точек, зависит от фазы и угла отклонения лучей. Это приводит к чередованию максимумов и минимумов.

Читайте также:  Красивая природа поля цветы

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны. А результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Условия для возникновения дифракции

Главным условием для возникновения дифракции является наличие препятствия и первоисточника света.

Длина препятствия не должна быть больше длины волны. В противном случае волна просто рассеется или будет заметна только вблизи. Чтобы можно было заметить постоянную картину дифракции, волны должны быть от разных источников. Этого добиться несложно: достаточно иметь один источник света и несколько препятствий. Когда волна попадает на препятствие, она становится новым световым источником. В результате данного взаимодействия световых волн от разных препятствий можно получить устойчивую дифракционную картину.

Таким образом, для возникновения дифракции длина световой волны должна быть соразмерна длине препятствия. Если размеры препятствия больше длины волны, то образуется тень, поскольку волны за нее не проникают. Если размер препятствия слишком мал, то свет с ним не взаимодействует. Чем меньше отверстие препятствия, тем быстрее световая волна расходится в стороны.

Получается, что дифракционное изображение напрямую связано с геометрическими особенностями препятствия.

Где можно наблюдать в природных условиях

Яркие примеры прохождения света через препятствие можно встретить в природе. Речь идет о случаях, когда облака прикрывают солнце или луну. Солнечный свет не может продолжить прямолинейное движение сквозь призму возникшего препятствия. В результате этого лучи преломляются и образуют дугу вокруг самого светила. Кроме того, в зависимости от структуры облака, свет может рассеиваться сквозь дождевые капли. Картина преломления при этом будет представлена разноцветным сиянием.

Радуга на небе или блики масляного пятна на воде также являются примером преломления световой волной препятствия в природных условиях.

Если смотреть на пылающее пламя сквозь запотевшее окно, то можно заметить, как огонь начинает неестественно двигаться в разных направлениях. При этом он окружается разноцветным ореолом, что тоже объясняется световым преломлением препятствия.

Что такое дифракционная решетка

Сфера отклонения света от прямолинейного направления нашла свое применение в повседневной жизни. Примером тому служит светоотражение на CD или DVD дисках. На первый взгляд отражение напоминает радугу. Но при более подробном изучении становится очевидным, что характеристика данного светоотражения имеет достаточно сложную структуру. На диск наносятся на одинаковом расстоянии друг от друга дорожки. Это создает совокупность щелей. При попадании на них света происходит дифракция. Она становится причиной появления световой радуги.

Дифракционная решетка — это совокупность многочисленных щелей и расстояний между ними.

Изображение на решетке является взаимодействием волн света, которые произошли от всех имеющихся щелей одновременно. В физике этот процесс называется многолучевой интерференцией.

Читайте также:  Гностические профессии человек природа

Наиболее сложным образцом световой дифракции считается голограмма на кредитных картах. Это связано с наличием на ней дифракционной решетки более сложного вида. В центре голограммы имеется яркое световое кольцо. При попадании на него света можно получить отражение в виде луны или солнца. Это обусловлено игрой света и тени: при попадании света голограммы на тень от пластика образуется некая световая волна.

Связь дифракции и разрешающей способности оптических приборов

Дифракция света считается ограничителем разрешения для оптических приборов: телескопа, микроскопа. В том числе и для человеческого глаза.

Размер препятствий должен быть намного больше длины волны света. Кроме того, рассматривается преломление световой волны препятствия на круглом отверстии.

В качестве примера возьмем 2 звезды на небе. Звездный свет попадает в глаз через зрачок. Таким образом, на сетчатке глаза обе звезды сформируют 2 картины. Они представлены двумя центральными максимумами. Если свет будет падать под определенным углом, то звезды сольются в одну звезду.

Получается, что разрешение можно увеличить или уменьшить, если изменить диаметр объектива или сократить длину волны.

Принцип увеличения используют в телескопах, что позволяет уменьшению рассматриваемого объекта до удобных для рассматривания размеров. Уменьшение объектива используют в изготовлении микроскопов. Это позволяет увеличить маленький элемент до удобных для рассматривания размеров.

Насколько полезной была для вас статья?

Источник

Дифракция света

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий.

В классической физике, явление дифракции описывается как интерференция волны в соответствии с принципом Гюйгенса-Френеля. Эти характерные модели поведения проявляются, когда волна встречает препятствие или щель, которая сравнима по размерам с ее длиной волны. Подобные эффекты возникают, когда световая волна проходит через среду с изменяющимся показателем преломления, или когда звуковая волна проходит через среду с изменением акустического импеданса. Дифракция происходит со всеми видами волн, в том числе звуковыми волнами, ветровыми волнами и электромагнитными волнами, а также с видимым светом, рентгеновскими лучами и радиоволнами.

Поскольку физические объекты имеют волновые свойства (на атомном уровне), дифракция происходит также с веществами и может быть изучена в соответствии с принципами квантовой механики.

Примеры

Эффекты дифракции часто встречаются в повседневной жизни. Наиболее яркими примерами дифракции являются те, которые связаны со светом; например, близко расположенные дорожки на CD или DVD дисках выступают в качестве дифракционной решетки. Дифракция в атмосфере мелких частиц может привести к яркому кольцу, которое видно возле яркого источника света, такого как солнце или луна. Спекл, который наблюдается, когда лазерный луч падает на оптически неровную поверхность, также является дифракцией. Все эти эффекты являются следствием того факта, что свет распространяется в виде волны.

Читайте также:  Запасы природного газа земли

Дифракция может произойти с любым видом волны.

Океанские волны рассеивают вокруг пристаней и других препятствий. Звуковые волны могут преломляться вокруг объектов, поэтому можно услышать, что кто-то зовет, даже когда он прячется за деревом.

История

Эффекты дифракции света были хорошо известны во времена Гримальди Франческо Марии, который также ввел термин дифракции. Результаты, полученные, Гримальди были опубликованы посмертно в $1665 $году. Томас Юнг провел знаменитый эксперимент в $1803$ году, демонстрируя интерференцию от двух близко расположенных щелей. Объясняя свои результаты с помощью интерференции волн, исходящих от двух разных щелей, он сделал вывод, что свет должен распространяться в виде волн. Френель сделал более точные исследования и расчеты дифракции, которые были опубликованы в $1815$ г. В основу своей теории Френель использует определение света, разработанное Христианом Гюйгенсом, дополнив его идеей об интерференции вторичных волн. Экспериментальное подтверждение теории Френеля стало одним из главных доказательств волновой природы света. В настоящее время эта теория известна как принцип Гюйгенса-Френеля.

Дифракция света

Дифракция на щели

Длинная щель бесконечно малой ширины, которая освещается светом, преломляет свет в серию круговых волн и в волновой фронт, который выходит из щели и является цилиндрической волной однородной интенсивности. Щель, которая шире, чем длина волны производит эффекты интерференции в пространстве на выходе из щели. Их можно объяснить тем, что щель ведет себя так, как будто она имеет большое количество точечных источников, которые распределены равномерно по всей ширине щели. Анализ этой системы упрощается, если рассматривать свет одной длины волны. Если падающий свет является когерентным, эти все источники имеют одинаковую фазу.

Дифракционная решетка

Дифракционная решетка представляет собой оптический компонент с периодической структурой, который расщепляет и дифрагирует свет на несколько лучей, распространяющихся в разных направлениях.

Свет, дифрагированный на решетке определяется путем суммирования света, дифрагированного от каждого из элементов, и по существу является сверткой дифракционных и интерференционных картин.

Источник

Объясните природу явления дифракции

Электродинамика

Магнитное поле

Механические колебания

Электромагнитные колебания

Механические волны

Электромагнитные волны

Геометрическая оптика

Волновая оптика

Основы теории относительности

Основы квантовой физики

Излучения и спектры

Световые кванты

Атомная физика

Ядерная физика

Физика элементарных частиц

Открытие позитрона. Античастицы

Современная физическая картина мира

Современная физическая картина мира

Строение Вселенной

Строение Вселенной

Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца и звёзд

Наша галактика и другие галактики

Пространственные масштабы наблюдаемой Вселенной

Применимость законов физики для объяснения природы космических объектов

«Красное смещение» в спектрах галактик

Современные взгляды на строение и эволюцию Вселенной

Наблюдение солнечных пятен, звёздных скоплений, туманностей и галактик

Медиаматериалы

Источник

Оцените статью