Основные системы живой природы

Уровни организации жизни

Выделяют следующие уровни организации жизни: молекулярный, клеточный, органно-тканевой (иногда их разделяют), организменный, популяционно-видовой, биогеоценотический, биосферный. Живая природа представляет собой систему, а различные уровни ее организации формируют ее сложное иерархическое строение, когда нижележащие более простые уровни определяют свойства вышележащих.

Так сложные органические молекулы входят в состав клеток и определяют их строение и жизнедеятельность. У многоклеточных организмов клетки организованы в ткани, несколько тканей образуют орган. Многоклеточный организм состоит из систем органов, с другой стороны, организм сам является элементарной единицей популяции и биологического вида. Сообщество представляется собой взаимодействующие популяции разных видов. Сообщество и окружающая среда формируют биогеоценоз (экосистему). Совокупность экосистем планеты Земля образует ее биосферу.

На каждом уровне возникают новые свойства живого, отсутствующие на нижележащем уровне, выделяются свои элементарные явления и элементарные единицы. При этом во многом уровни отражают ход эволюционного процесса.

Выделение уровней удобно для изучения жизни как сложного природного явления.

Рассмотрим подробнее каждый уровень организации жизни.

Уровни организации жизни

Молекулярный уровень

Хотя молекулы состоят из атомов, отличие живой материи от неживой начинает проявляться только на уровне молекул. Только в состав живых организмов входит большое количество сложных органических веществ – биополимеров (белков, жиров, углеводов, нуклеиновых кислот). Однако молекулярный уровень организации живого включает и неорганические молекулы, входящие в клетки и играющие важную роль в их жизнедеятельности.

Функционирование биологических молекул лежит в основе живой системы. На молекулярном уровне жизни проявляется обмен веществ и превращение энергии как химические реакции, передача и изменение наследственной информации (редупликация и мутации), а также ряд других клеточных процессов. Иногда молекулярный уровень называют молекулярно-генетическим.

Клеточный уровень жизни

Именно клетка является структурной и функциональной единицей живого. Вне клетки жизни нет. Даже вирусы могут проявлять свойства живого, лишь оказавшись в клетке хозяина. Биополимеры в полной мере проявляют свою реакционную способность будучи организованы в клетку, которую можно рассматривать как сложную систему взаимосвязанных в первую очередь различными химическими реакциями молекул.

На этом клеточном уровне проявляется феномен жизни, сопрягаются механизмы передачи генетической информации и превращения веществ и энергии.

Органно-тканевой

Ткани есть только у многоклеточных организмов. Ткань представляет собой совокупность сходных по строению и функциям клеток.

Ткани образуются в процессе онтогенеза путем дифференцировки клеток имеющих одну и ту же генетическую информацию. На этом уровне происходит специализация клеток.

Читайте также:  Главное министерство природных ресурсов

У растений и животных выделяют разные типы тканей. Так у растений это меристема, защитная, основная и проводящая ткани. У животных — эпителиальная, соединительная, мышечная и нервная. Ткани могут включать перечень подтканей.

Орган обычно состоит из нескольких тканей, объединенных между собой в структурно-функциональное единство.

Органы формируют системы органов, каждая из которых отвечает за важную для организма функцию.

Органный уровень у одноклеточных организмов представлен различными органеллами клетки, выполняющими функции переваривания, выделения, дыхания и др.

Организменный уровень организации живого

Наряду с клеточным на организменном (или онтогенетическом) уровне выделяются обособленной структурные единицы. Ткани и органы не могут жить независимо, организмы и клетки (если это одноклеточный организм) могут.

Многоклеточные организмы состоят из систем органов.

На организменном уровне проявляются такие явления жизни как размножение, онтогенез, обмен веществ, раздражимость, нервно-гуморальная регуляция, гомеостаз. Другими словами, его элементарные явления составляют закономерные изменения организма в индивидуальном развитии. Элементарной единицей является особь.

Популяционно-видовой

Организмы одного вида, объединенные общим местообитанием, формируют популяцию. Вид обычно состоит из множества популяций.

Популяции имеют общий генофонд. В пределах вида они могут обмениваться генами, т. е. являются генетически открытыми системами.

В популяциях происходят элементарные эволюционные явления, приводящие в конечном итоге к видообразованию. Живая природа может эволюционировать только в надорганизменных уровнях.

На этом уровне возникает потенциальное бессмертие живого.

Биогеоценотический уровень

Биогеоценоз представляет собой взаимодействующую совокупность организмов разных видов с различными факторами среды их обитания. Элементарные явления представлены вещественно-энергетическими круговоротами, обеспечиваемыми в первую очередь живыми организмами.

Роль биогеоценотического уровня состоит в образовании устойчивых сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания.

Биосфера

Биосферный уровень организации жизни — это система высшего порядка жизни на Земле. Биосфера охватывает все проявления жизни на планете. На этом уровне происходит глобальный круговорот веществ и поток энергии (охватывающий все биогеоценозы).

Источник

7.3. Уровни организации живой природы

Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерархии живого. Выделяют следующие уровни организации живой материи.

  1. Молекулярный (молекулярно-генетический). Он включает в себя способ существования и самовоспроизводства сложных информационных органических молекул, высокомолекулярные органические соединения, такие как белки, вирусы, плазмиды, нуклеиновые кислоты и др.
  2. Субклеточный (надмолекулярный). На этом уровне живая природа организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные структуры.
  3. Клеточный. На этом уровне живая природа представлена клетками, т.е. элементарной структурной и функциональной единицей живого.
  4. Органо-тканевый. На этом уровне живая природа организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организма, выполняющая определенную функцию или функции.
  5. Организменный (онтогенетический). На этом уровне живая природа представлена организмами. Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.
  1. Биоценотический. На этом уровне живая природа образует биоценозы – совокупность популяций разных видов, обитающих на определенной территории.
  2. Биогеоценотический. На этом уровне живая природа формирует биогеоценозы – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).
  3. Биосферный. На этом уровне живая природа формирует биосферу – оболочку Земли, преобразованную деятельностью живых организмов.
Читайте также:  Интересные факты дикой природы

7.4. Свойства живых систем

  1. Клеточное строение. Все живые организмы, кроме вирусов, имеют клеточное строение.
  2. Обмен веществ (метаболизм) и энергозависимость. Живые организмы являются открытыми системами, они зависят от поступления в них из внешней среды веществ и энергии. Живые существа способны использовать два вида энергии – световую и химическую, и поэтому признаку делятся на две группы: фототрофы (организмы, использующие для биосинтеза световую энергию – растения, цианобактерии) и хемотрофы (организмы, использующие для биосинтеза энергию химических реакций окисления неорганических соединений – нитрифицирующие бактерии, железобактерии, серобактерии и др.). В зависимости от источников углерода живые организмы делят на автотрофы (организмы, способные создавать органические вещества из неорганических – растения, цианобактерии), гетеротрофы (организмы, использующие в качестве источника углерода органические соединения – животные, грибы и большинство бактерий) и миксотрофы (организмы, которые могут как синтезировать органические вещества из неорганических, так и питаться готовыми органическими оединениями (насекомоядные растения, представители отдела эвгленовых водорослей и др.).
  1. Подготовительный этап заключается в расщеплении сложных углеводов до простых: глюкозы, жиров до жирных кислот и глицерина, белков — до аминокислот.
  2. Бескислородный этап дыхания – гликолиз, в результате которо­го глюкоза расщепляется до пировиноградной кислоты (ПВК); в ито­ге образуется АТФ (из 1 моль глюкозы). У анаэробов или у аэробов при недостатке кислорода протекает брожение.
  3. Кислородный этап – дыхание, т.е. полное окисление ПВК осуществляется в митохондриях эукариот в присутствии кислорода и включает две стадии: цепь последовательных реакций — цикл Кребса (цикл трикарбоновых кислот) и цикл переноса электронов; в итоге образуется 36 АТФ (из 1 моль глюкозы).
  1. Саморегуляция (гомеостаз). Живые организмы обладают способностью поддерживать гомеостаз – постоянство своего химического состава и интенсивность обменных процессов.
  1. Наследственность. Живые организмы способны передавать неизменными признаки и свойства из поколения в поколение с помощью носителей информации – молекул ДНК и РНК.
  2. Изменчивость. Живые организмы способны приобретать новые признаки и свойства. Изменчивость создает разнообразный исходный материал для естественного отбора, т.е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что в свою очередь приводит к появлению новых форм жизни и новых видов организмов.
  3. Самовоспроизведение (размножение). Живые организмы способны размножаться – воспроизводить себе подобных. Благодаря размножению осуществляются смена и преемственность поколений.
  4. Принято различать два основных типа размножения: бесполое и половое.
  5. Индивидуальное развитие (онтогенез). Каждой особи свойствен онтогенез – индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). Развитие сопровождается ростом.
  6. Эволюционное развитие (филогенез). Живой материи в целом свойствен филогенез – историческое развитие жизни на Земле с момента ее появления до настоящего времени.
  7. Адаптации. Живые организмы способны адаптироваться, т.е. приспосабливаться к условиям окружающей среды.
  8. Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).
  9. Целостность и дискретность. С одной стороны, вся живая материя целостна, определенным образом организована и подчиняется общим законам; с другой — любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов. Любой организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т.е. обособленных или отграниченных в пространстве, но тесно связанных и взаимодействующих между собой, частей, образующих структурно-функциональное единство.
  10. Иерархичность. Начиная с биополимеров (белков и нуклеиновых кислот) и заканчивая биосферой в целом, все живое находится в определенной соподчиненности. Функционирование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.
  11. Негэнтропия. Согласно второму закону термодинамики, все процессы, самопроизвольно протекающие в изолированных системах, развиваются в направлении понижения упорядоченности, т.е. возрастания энтропии. В то же время по мере роста и развития живые организмы, наоборот, усложняются, что, что не противоречит второму закону термодинамики, поскольку живые организмы представляют собой открытые системы. Организмы питаются, поглощая при этом энергию извне, выделяют в окружающую среду тепло и продукты жизнедеятельности, наконец, погибают и разлагаются. По образному выражению Э. Шредингера, «организм питается отрицательной энтропией». Совершенствуясь и усложняясь, организмы вносят хаос в окружающий их мир.
Читайте также:  Ликвидация опасных ситуаций природного характера

Источник

Оцените статью