Особенности пищеварения птиц физиология

14. Пищеварение у птиц

У зерноядных птиц клюв твердый, приспособленный для склевывания и дробления твердого корма. Захваченный корм в ротовой полости не задерживается, смачивается слюной и по пищеводу поступает в зоб. Слюны выделяется очень мало, она содержит слизь, которая облегчает проглатывание корма. У гусей и уток вместо зоба имеется расширение пищевода. В зобе перевариваются углеводы, белки и жир за счет ферментов растительных кормов, а также микрофлоры. Слизистая оболочка зоба ферменты не вырабатывает.

По мере освобождения желудка от корма зоб рефлекторно сокращается и из него часть корма поступает в железистый желудок. У птиц желудочный сок выделяется постоянно, но прием корма усиливает сокоотделение.

Железистый желудок мал, и в нем пища только смачивается соком и продвигается в мышечный отдел желудка. Мышечный желудок имеет хорошо развитые мышцы, внутри покрыт твердой оболочкой – кутикулой (застывший коллоидный секрет), которая защищает желудок от механического повреждения при перетирании твердой пищи камешками, стеклышками и другими инородными предметами.

Поступившая в мышечный желудок кормовая масса тщательно перетирается, перемешивается с желудочным соком и переваривается.

Главный фермент желудочного сока – пепсин – переваривает белки до альбумоз и пептонов.

В кишечнике переваривание идет за счет поджелудочного и кишечного соков и желчи. В толстом кишечнике гидролиз идет за счет ферментов, поступивших из тонкого кишечника, а в слепых кишках – и за счет микроорганизмов.

Кишечник у птиц сравнительно короткий, общая его длина только в 3-7 раз превышает длину их тела (а у млекопитающих – в 15 –30 раз). Процессы ферментации и всасывания протекают более интенсивно, чем у млекопитающих. Наличие антиперистальтических сокращений в кишечнике обеспечивает более длительную задержку содержимого и лучшее использование питательных веществ корма.

Дефекация у птиц совершается рефлекторно. Центр регуляции расположен в пояснично — крестцовой части спинного мозга. В клоаку открываются мочеточники и моча смешивается с каловыми массами.

Физиология обмена веществ

        1. Обмен веществ и энергии как основная функция организма.
        2. Белковый обмен.
        3. Обмен углеводов.
        4. Обмен липидов.
        5. Методы изучения обмена веществ.
        6. Роль воды и минеральных веществ в организме.

        1. Обмен веществ и энергии как основная функция организма

        Обмен веществ– это сложная система химических реакций, связанных между собой через пластические компоненты, энергетическое обеспечение и общие регуляторы. Целями этих реакций является извлечение энергии, получение структурных блоков и синтез полимеров, строение которых соответствует индивидуальной генетической программе организма. Все компоненты обмена веществ сопровождаются тепловыми эффектами той или иной направленности, поэтому наиболее общие характеристики обмена веществ являются энергетически значимыми. Жизнедеятельность возможна лишь при беспрерывном поступлении энергии в организм и использовании им этой энергии. Обмен веществ начинается с поступления в организм органических и неорганических питательных веществ, витаминов и воды. Органические питательные вещества не только обеспечивают организм необходимой для его жизнедеятельности энергией, но и дают необходимые исходные материалы для пластических нужд организма. В обмене веществ и энергии выделяют два взаимосвязанных, но разно направленных процесса – анаболизм – процесс ассимиляции и катаболизм – процесс диссимиляции. Анаболизм основан на процессе использования организмом внешних по отношению к нему веществ синтезу свойственных ему сложных органических соединений. Он обеспечивает рост, развитие, обновление биологических структур, непрерывный ресинтез макроэргических соединений и накопление энергетических субстрактов. Катаболизм – совокупность процессов расщепления сложных молекул, компонентов клеток, органов и тканей до простых веществ с использованием части из них в качестве предшественника биосинтеза и до конечных продуктов распада с образованием макроэргических соединений. Макроэргическими соединениям называются вещества, расщепление которых сопровождается выделением большого количества энергии. В организме роль макроэргических соединений выполняют АТФ, креотинфосфат. Процессы анаболизма и катаболизма находятся в организме в динамическом равновесии или превалирование одного из них. Преобладание анаболизма над катаболизмом приводит к росту, накоплению массы тканей, а преобладание катаболических процессов ведет к разрушению тканевых структур, выделению энергии. Тесная связь ассимиляции (анаболизма) и диссимиляции (катаболизма) – обязательное условие жизнедеятельности организма. Рост организма, прежде всего, связан с синтезом белков и других высокомолекулярных соединений, но он невозможен без значительных трат энергии, которая освобождается при распаде углеводов и жиров, т.е. в ходе катаболизма. Естественно, что для всех этапов жизни характерно различное количественное соотношение процессов ассимиляции и диссимиляции. В растущем организме преобладают анаболические процессы, во взрослом устанавливается относительное равновесие, а в старческом возрасте преобладает диссимиляция.

        Источник

        32. Особенности пищеварения у птиц

        Домашние птицы питаются преимущественно кормами растительного происхождения. Они не имеют зубов, поэтому у них отсутствуют процессы жевания. В ротовой полости корм смешивается со слюной, не задерживается и быстро проглатывается.

        Слюны у птицы выделяется мало, она содержит слизь и небольшое количество малоактивных ферментов — амилазу и глюкозидазу.

        Изо рта корм поступает в зоб, который у кур вмещает около 100 г зерна. Слизистая оболочка его не имеет желез, секретирую-щих ферменты, но под влиянием ферментов растительных кормов и микроорганизмов в нем перевариваются белки, углеводы и жиры. Твердые корма увлажняются и размягчаются. В зобу пища в среднем задерживается 3-4 ч и затем переходит в желудок. Всасывания в зобу не происходит.

        Желудок птиц состоит из двух отделов: железистого и мышечного.

        В железистом желудке выделяется желудочный сок, содержащий соляную кислоту и протеолитические ферменты. Полость его мала и в нем корм не задерживается. Желудочное пищеварение у птиц происходит в мышечном желудке. В нем расщепляются белки, углеводы и жиры.

        Мышечный желудок имеет мощные гладкие мышцы. В нем происходит механическое перетирание корма. Стенки мышечного желудка выстланы ороговевшей складчатой оболочкой. На ней открываются железы, продуцирующие особый коллоид, застывающий в роговую пленку, — кутикулу. Последняя предохраняет слизистую оболочку мышечного желудка от повреждений твердыми предметами. В полости этого желудка всегда находятся мелкие камешки, кусочки стекла и другие твердые предметы, усиливающие механический эффект работы желудка.

        Основное пищеварение происходит в кишечнике. Поджелудочный и кишечный соки птиц по составу и характеру воздействия на корм не отличаются от этих соков у млекопитающих. В кишечнике происходит и бактериальное расщепление корма, причем эти процессы происходят главным образом в слепых кишках.

        Кишечное пищеварение у птиц протекает весьма энергично, что связано с тем, что кишечник относительно короток и время пребывания корма в пищеварительном канале относительно непродолжительно- у кур не превышает суток, часто сокращаясь до 6-8 ч.

        Движения кишечника у птиц такие же, как и у млекопитающих, но у птиц наряду с перистальтическими происходят и антиперистальтические сокращения. В результате этого содержимое передвигается по кишечнику взад и вперед и нередко забрасывается в желудок.

        Кал у птиц полужидкий, зеленоватого цвета с беловатым налетом на поверхности, выделяется вместе с мочой.

        33. Белковый обмен и его регуляция. Понятие об азотистом балансе

        Регуляция обмена белков осуществляется нейроэндокринным путем.

        Участие нервной системы в регуляции белкового обмена.

        Имеются данные, что в гипоталамусе (промежуточный мозг) существуют специальные центры, регулирующие белковый обмен. Механизм влияния ЦНС осуществляется через эндокринную систему.

        Гормональная регуляция метаболизма белков может приводить к увеличению его анаболической направленности (влияния соматотропина, инсулина, глюкокортикоидов, тестостерона, эстрогенов, тироксина) и реже способствует катаболическим эффектам (глюкокортикоиды, тироксин) за счет чего обеспечивает динамическое равновесие синтеза и распада белков.

        Синтез белков контролируется соматотропным гормоном аденогипофиза «СТГ» или гормоном роста. Этот гормон стимулирует увеличение массы всех органов и тканей во время роста организма за счет:

        1) повышения проницаемости клеточных мембран для аминокислот;

        2) подавления синтеза катепсинов (внутриклеточных протеолитических ферментов);

        3) катаболическое действие СТГ на жировой обмен снижает скорость окисления аминокислот, что повышает транспорт аминокислот в клетки и синтез белка;

        Аналогичный эффект оказывает гормон поджелудочной железы (инсулин) и гормоны мужских половых желез (андрогены). Анаболический эффект тестостерона реализуется главным образом в мышечной ткани. Эстрогены действуют подобно тестостерону, но их эффект значительно меньше. Повышение образования белков, при избытке половых гормонов, выражается в усиленном росте, увеличении массы тела. В ряде случаев, например в период полового созревания, эти явления имеют физиологический характер. В других случаях (например, при опухоли гипофиза) могут развиваться гигантизм и другие гиперпластические процессы.

        Распад белка регулируется гормонами щитовидной железы – тироксином и трийодтиронином. Эти гормоны в определенных концентрациях, могут стимулировать синтез белка, и благодаря этому активизировать рост, развитие и дифференцировку тканей и органов. При ограничении поступления с пищей жиров и углеводов тироксин мобилизует белки для энергетического использования. Если же углеводов, жиров и аминокислот в организме достаточно, тироксин способствует повышению синтеза белка.

        Гормоны коры надпочечников – глюкокортикоиды усиливают распад белков в тканях (особенно в мышечной и лимфоидной). Также глюкокортикоиды вызывают уменьшение концентрации белка в большинстве клеток, за счет чего повышается концентрации аминокислот в плазме крови. При этом они увеличивают синтез белка в печени и его переход в углеводы (глюконеогенез).

        Гормон мозгового вещества надпочечников – инсулин повышает поступление в клетки аминокислот, но аналогичное влияние инсулина на углеводный обмен ограничивает использование аминокислот в энергетическом обмене.

        Азотистый баланс – это разность между количеством белка усвоенного организмом и подвергнутого расщеплению. Количество усвоенного белка рассчитывается по разнице между содержанием азота принятого с пищей и выделенного из организма с калом, а количество белка подвергнутого расщеплению вычисляют по содержанию азота находящегося преимущественно в моче и частично в поте.

        У взрослого здорового человека при адекватном питании количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстанавливается, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.

        Состояние, при котором количество усвоенного белка превышает разрушение, называется положительным азотистым балансом. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличением мышечной массы. В этих условиях происходит задержка азота в организме (ретенция азота).

        Состояние, при котором количество разрушенного в организме белка больше усвоенного, называется отрицательным азотистым балансом. Этот вид азотистого баланса наблюдается при белковом голодании, у пожилых людей, в период тяжелых заболеваний. Отрицательный азотистый баланс развивается при полном отсутствии или недостаточном количестве белка в пище, а также при потреблении пищи, содержащей неполноценные белки. Не исключена возможность дефицита белка в организме даже при нормальном его поступлении (при значительном увеличении потребности организма в белке). Во всех этих случая имеет место белковое голодание.

        Источник

        Читайте также:  Птица коста рики кетцаль
Оцените статью