Открытие новых законов природы

Открытие новых законов природы

«Нам необыкновенно повезло, что мы живём в век, когда ещё можно делать открытия. Это как открытие Америки, которую открывают раз и навсегда. Век, в который мы живем, это век открытия основных законов природы, и это время уже никогда не повторится. Это удивительное время, время волнений и восторгов, но этому наступит конец. Конечно, в будущем интересы будут совсем другими. Тогда будут интересоваться взаимосвязями между явлениями разных уровней — биологическими и т. п. или, если речь идет об открытиях, исследованием других планет, но все равно это не будет тем же, что мы делаем сейчас».

Ричард Фейнман, Характер физических законов, М., «Наука», 1987 г., с. 158.

«Теперь я хочу рассказать Вам об искусстве угадывания законов природы. Это действительно искусство. Как же это делается? Для того чтобы попытаться получить ответ на этот вопрос, можно, например, обратиться к истории науки и посмотреть, как это делали другие. Вот поэтому мы и займёмся историей.

Нам нужно начать с Ньютона. Он находился в таком положении, что его знания были неполными, и он мог угадывать законы, сопоставляя понятия и представления, которые лежали близко к эксперименту. Между наблюдениями и экспериментальной проверкой не было дистанции огромного размера. Таков первый способ, но сегодня при его помощи вам вряд ли удастся добиться успеха.

Следующим великим физиком был Максвелл, открывший законы электричества и магнетизма. Вот что он сделал. Он объединил все законы электричества, открытые Фарадеем и другими учёными, работавшими до него, разобрался в том, что у него получилось, и понял, что с математической точки зрения один из этих законов противоречит другим. Для того чтобы всё это выправить, ему нужно было добавить в уравнения ещё одно слагаемое. Так он и сделал, придумав для себя модель из расположенных в пространстве шестерёнок и зубчатых колес. Он нашёл, каким должен быть новый закон, но никто не обращал на этот закон никакого внимания, так как никто не верил в его механизмы. Сегодня мы тоже не верим в эти механизмы, но полученные Максвеллом уравнения оказались правильными. Так что рассуждения могут быть неправильными, а ответ — верным.

В случае с теорией относительности характер открытия был совершенно другим. К этому времени накопилось много парадоксов: известные законы давали взаимно исключающие результаты. Формировался новый тип анализа — с точки зрения возможной симметрии физических законов. Ситуация была особенно сложной, ибо впервые стало ясно, что законы (и пример тому законы Ньютона) очень долго могут считаться правильными и всё же в конце концов оказаться неверными. Кроме того, было трудно поверить, что могут быть неверными такие обычные, казалось бы, от рождения нам присущие представления о пространстве и времени.

К открытию квантовой механики мы пришли двумя совершенно разными путями — и пусть это послужит нам уроком. Здесь вновь, и даже в большей степени, накопилось огромное число парадоксов, открытых экспериментальным путем, и их никак не удавалось разрешить на основании уже известных законов. Дело было не в том, что нам не хватало знаний, а в том, что их было слишком много. Вы предсказываете, что должно происходить одно, а на самом деле происходит совсем другое. Два разных пути были выбраны Шредингером, который угадал основное направление, и Гейзенбергом, утверждавшим, что нужно исследовать только то, что может быть измерено. Эти два совершенно различных философских подхода привели в конце концов к одному открытию.

Читайте также:  Желатин по химической природе

В самое последнее время в связи с открытием уже упомянутых мною законов слабых взаимодействий (распад нейтрона на протон, электрон и антинейтрино, о которых далеко ещё не всё известно) возникла совсем другая ситуация. На этот раз нам просто не хватало знаний и догадки строились лишь о виде уравнений. Но теперь особенную трудность представляло то, что все эксперименты оказались неправильными . А как можно угадать правильный ответ, если каждый теоретический результат расходится с экспериментом? Для того чтобы утверждать, что эксперимент неверен, требуется немалое мужество.

Сейчас у нас нет парадоксов, по крайней мере, на первый взгляд. Правда, у нас есть эти бесконечности, которые вылезают наружу при попытке объединить все законы в единое целое, но люди так набили руку на том, как прятать весь мусор под ковёр, что порой начинает казаться, будто это не так уж серьёзно. Как и прежде, то, что мы открыли все эти частицы, ни о чём не говорит кроме того, что наши знание неполны. Я уверен, что в физике история не повторится, как это видно из уже приведенных примеров, и вот почему. Любая схема типа «ищите законы симметрии», или «запишите всё, что Вы знаете, в математической форме», или угадайте уравнения» сейчас уже всем известна, и такими схемами все время пытаются пользоваться.

Если Вы застряли, ответ не может быть получен по одной из этих схем потому, что прежде всего Вы попробовали использовать именно их. Каждый раз нужно искать новый путь. Каждый раз, когда образуется длительный затор, когда накапливается слишком много нерешённых задач, это происходит потому, что мы пользуемся теми же методами, которыми пользовались раньше. Новую же схему, новое открытие нужно искать совсем на другом пути. Так что от истории науки не следует ждать особой помощи.

Хочу остановиться теперь коротко на идее Гейзенберга, согласно которой не нужно говорить о том, что всё равно нельзя измерить. Дело в том, что об этом толкуют многие, по-настоящему не понимая смысла этого утверждения.

Его можно интерпретировать следующим образом: Ваши теоретические построения или открытия должны быть такими, чтобы выводы из них можно было сравнивать с результатами эксперимента, т. е. чтобы из них не получилось, что «один тук равняется трём нукам», причем никто не знает, что такое эти самые тук и нук. Ясно, что так дело не пойдёт. Но если теоретические результаты можно сравнить с экспериментом, то это все, что нам требовалось. Это вовсе не значит, что Ваши туки и нуки не могут появляться в первоначальной гипотезе. Вы можете впихнуть в Вашу гипотезу сколько угодно хлама при условии, что её следствия можно будет сравнить с результатами экспериментов. А это не всем до конца понятно.

Читайте также:  Данные гибкости от природы

Часто приходится слышать жалобы на то, что мы совершенно необоснованно распространяем на сферу атомной физики наши представления о частицах, траекториях и т. п. Но ведь это совсем не так, в подобной экспансии нет ничего необоснованного. Мы просто обязаны, мы вынуждены распространять всё то, что мы уже знаем, на как можно более широкие области, выходить за пределы уже постигнутого. Опасно? Да. Ненадёжно? Да. Но ведь это единственный путь прогресса. Хотя этот путь неясен, только на нём наука оказывается плодотворной. Ведь наука приносит пользу только тогда, когда говорит Вам о ещё непоставленных экспериментах. Она никому не нужна, если позволяет судить лишь о том, что известно из опыта, что только что произошло. Поэтому всегда необходимо распространять идеи за рамки того, на чем они уже опробованы.

Например, закон всемирного тяготения, который был придуман для объяснений движения планет, был бы бесполезен, если бы Ньютон просто сказал; «Теперь я знаю, как ведут себя планеты», — и не считал бы себя вправе применять его к силам притяжения Луны Землей, а его последователи — предполагать: «А может быть, и галактики удерживаются силами тяготения». Мы должны пробовать такие идеи. Конечно, можно сказать: «Когда переходишь к масштабам галактик, можно ожидать чего угодно, поскольку мы ничего об этом не знаем». Верно, но такое ограничение — это конец науке. Сейчас у нас нет окончательно выработавшегося представления о законах поведения галактик. Если же предположить, что их поведение целиком объясняется уже известными законами, такое предположение будет конкретным и определённым, и его легко экспериментально опровергнуть. Гипотезы именно такого рода, вполне определённые и легко сравнимые с экспериментом, мы и ищем. На самом деле, все известное нам о поведении галактик на сегодняшний день не опровергает, по-видимому, предположения, сделанного нами выше. Можно привести ещё один пример, ещё более интересный и важный. Самой плодотворной мыслью, сильнее всего стимулирующей прогресс в биологии, является, по-видимому, предположение о том, что всё, что делают животные, делают атомы, что в живой природе все результат каких-то физических и химических процессов, а сверх этого ничего нет. Конечно, всегда можно сказать: «Когда переходишь к живой природе, все возможно». Но если Вы встанете на такую точку зрения, Вы никогда не поймёте законов живой природы. Понятно, очень трудно поверить, что извивающиеся щупальца осьминога — это лишь игра атомов, подчиняющихся известным законам физики. Но если исследовать такое движение, пользуясь подобной гипотезой, то оказывается, что мы можем довольно точно угадывать его характер. А тем самым мы добиваемся большого прогресса.

Читайте также:  Объекты федеральных природных ресурсов

В догадках нет ничего ненаучного, хотя многие не занимающиеся наукой и думают, что это так. Несколько лет назад мне пришлось разговаривать с одним дилетантом о летающих тарелках: поскольку я учёный, я должен знать о летающих тарелках всю подноготную! Я объяснил ему, что не думаю, чтобы летающие тарелки действительно существовали. Это возмутило моего собеседника. «Разве существование летающих тарелок невозможно? Разве Вы можете доказать, что это невозможно?» — горячился он. «Нет, — отвечаю я, — доказать этого я не могу. Просто что очень маловероятно». — «Но рассуждать так совершенно ненаучно, — продолжал наступать мой оппонент, — если Вы не можете доказать, что это невозможно, как же можно позволить себе говорить, что это маловероятно?» Но это и есть самый научный способ рассуждений. Наука говорит как раз о том, что более и что менее вероятно, а не доказывает каждый раз, что возможно, а что нет. Если бы я хотел высказаться более определённо, то мне нужно было бы сказать так: «Видите ли, на основании своих представлений об окружающем нас мире я считаю, что сообщения о летающие тарелках являются скорее результатом известной иррациональности мышления жителей нашей планеты, чем неизвестных рациональных усилий мыслящих существ с других планет». Просто первое из предположений гораздо более правдоподобно, и всё тут. Это просто хорошая гипотеза. А мы всегда стараемся придумать самое правдоподобное объяснение, не забывая при этом о том, что если оно вдруг окажется негодным, нам придется заняться исследованием других возможностей.

Но как угадать, что нужно сохранять, а чем можно и пожертвовать? У нас столько прекрасных принципов и известных фактов — и всё-таки у нас не сходятся концы с концами. То мы вновь получаем бесконечно большие значения, то наше объяснение оказывается неполным — чего-то недостаёт. Иногда это значит, что нам нужно расстаться с какой-то идеей. По крайней мере в прошлом всегда оказывалось, что для того чтобы выйти из аналогичного затруднения, приходилось пожертвовать каким-то глубоко укоренившимся представлением. Весь вопрос как раз и сводится к тому, что сохранить, а что отбросить. Если пожертвовать сразу всем, то это заведёт нас слишком далеко, и у нас практически ничего не останется для работы. В конце концов, закон сохранения энергии кажется разумным, он удобен, и мне не хотелось бы с ним расстаться. Для того чтобы угадать, что сохранить и что отбросить, требуется немалое мастерство. По-правде говоря, я вполне допускаю, что дело здесь только в удаче, но выглядит все именно так, как если бы для этого требовалось большое мастерство.

Источник

Оцените статью