Химия. 11 класс
Любое химическое соединение — молекулу (CO2), кристалл (NaCl), сложный ион () — с точки зрения электронного строения можно представить в виде системы, состоящей из атомных ядер и связывающих их электронов. Взаимодействие, которое делает эту систему устойчивой, называют химической связью.
Химическая связь — это взаимодействие, в результате которого отдельные атомы объединяются в более сложные системы (молекулы, кристаллы, ионы и др.).
Химическая связь обусловлена действием сил притяжения и отталкивания между положительно заряженными ядрами и отрицательно заряженными электронами, то есть имеет электростатическую природу.
Электроны, которые принимают участие в образовании химических связей, называют валентными. Это электроны внешних электронных оболочек атомов.
Рассмотрим, как и почему образуется химическая связь.
Основным условием образования химической связи является понижение полной энергии системы ядер и электронов по сравнению с энергией изолированных атомов.
Уменьшение полной энергии системы ядер и электронов достигается в результате совместного использования электронов разными атомами. В зависимости от того, как в результате распределена электронная плотность, различают три типа химической связи: ковалентную, ионную и металлическую.
Механизмы образования этих связей вы уже рассматривали при изучении химии в 8–10-х классах. Здесь мы дополним понятие химической связи представлениями о состоянии электронов в атоме.
Источник
Природа химической связи
Химическая связь -это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую комбинацию из них. По своей природе она представляет собой электростатическую силу притяжения между отрицательно заряженными электронами и положительно заряженными ядрами. Величина этой силы притяжения зависит главным образом от электронной конфигурации внешней оболочки атомов (см. гл. 1). Например, благородные газы с трудом образуют химические связи, потому что они имеют устойчивую внешнюю электронную оболочку. В отличие от этого элементы, атомы которых имеют во внешней оболочке только один электрон, легко образуют связи. Примером таких элементов является водород.
Когда два атома водорода сближаются на малое расстояние, они притягиваются друг к другу. Однако, если они сближаются слишком сильно, между ними возникает отталкивание. Оптимальным оказывается такое расстояние, при котором силы притяжения и отталкивания уравновешиваются. Ha таком расстоянии потенциальная энергия двух взаимодействующих атомов минимальна. Это расстояние называется длиной связи. Мы еще вернемся к ее более подробному обсуждению в данной главе. Ha рис. 2.1 показана зависимость потенциальной энергии от расстояния между ядрами. Кривая такого типа называется кривой Морзе. Энергия, необходимая для того, чтобы разделить два связанных между собой атома и удалить их друг от друга на расстояние, на котором они уже не испытывают силы притяжения друг к другу, называется энергия связи, или энергия диссоциации связи. Ее экспериментальное определение осуществляется путем измерения энтальпии связи (с этим понятием мы познакомимся в гл. 5).
Способность атома образовывать химические связи называется его валентностью. Впрочем, это понятие считается сильно устаревшим, поскольку в настоящее время гораздо чаще принято рассматривать химическую связь не вообще, а с учетом ее конкретного типа. Электроны, пршшмающие участие в образовании химических связей, называются валентными электронами. Эти электроны находятся на самых высоких по энергии орбиталях атома (см. гл. 1). Внешняя оболочка атома, которая содержит эти орбитали, называется валентной оболочкой.
Электронная теория валентности. Современные представления о природе химической связи основаны на электронной теории валентности. Эту теорию разработали независимо Г. Н. Льюис и В. Коссель в 1916 г. Согласно электронной теории валентности, атомы, образуя связи, приближаются к достижению наиболее устойчивой (т.е. имеющей наиболее низкую энергию) электронной конфигурации. Атомы могут достичь этого двумя способами:
1. Они могут терять либо приобретать электроны, образуя ионы. Если атомы приобретают электроны, они превращаются в анионы. Если они теряют электроны, то превращаются в катионы. Анионы и катионы с заполненной внешней электронной оболочкой имеют устойчивую электронную конфигурацию. Между анионом и катионом возникает химическая связь, представляющая собой электростатическую силу притяжения. Химическая связь такого типа ранее называлась электровалентной связью; современное название ионная связь.
2. Атомы могут также приобретать устойчивые внешние электронные конфигурации путем обобществления электронов. Возникающая при этом химическая связь называется ковалентной связью. Ковалентная связь образуется в результате обобществления пары электронов, поставляемых по одному от каждого атома. Однако в некоторых молекулах или многоатомных ионах оба таких электрона могут поставляться только одним атомом. Такая разновидность ковалентной связи называется координационной, донорно-акцепторной или дативной ковалентной связью.
Правило октета. Когда атом какого-либо элемента образует химическую связь, приобретая, теряя либо обобществляя валентные электроны, его электронная конфигурация становится такой же, как у атома благородного газа, расположенного в конце того же периода, что и данный элемент, либо в конце предыдущего периода. Атомы всех благородных газов, за исключением гелия, имеют во внешней оболочке устойчивый октет (восьмерку) электронов. Поэтому образование химических связей путем достижения устойчивых электронных конфигураций, как в атомах благородных газов, составляет суть так называемого правила октета. Это правило применимо и к ионным, и к ковалентным связям.
Другие типы химической связи. Особый случай представляет собой химическая связь в металлах; ее нельзя отнести ни к ионному типу, ни к ковалентному. В твердом состоянии металлы состоят из положительно заряженных ионов, плотно упакованных в кристаллическую решетку и удерживаемых вместе свободными электронами, которые «плавают» вокруг ионов в «электронном море». Такой тип связи называется металлической связью.
Существуют еще два типа химической связи, которые тоже будут рассматриваться в данной главе. Это — водородная связь и вандерваальсовы силы. Связи этих двух типов значительно слабее, чем связи других типов.
Источник
2. Природа и типы химических связей
Атомы большинства химических элементов не могут существовать в изолированном состоянии. Они соединяются между собой и образуют молекулы или кристаллы (атомные, металлические, ионные).
Химическая связь — это электростатическое взаимодействие атомов, в результате которого они объединяются в более сложные комплексы (ионы, радикалы, молекулы, кристаллы).
Образование химической связи происходит самопроизвольно, и при этом всегда наблюдается выделение энергии. Это значит, что полная энергия образовавшейся системы меньше, чем общая энергия отдельных атомов. Стремление системы к минимуму энергии является главной причиной возникновения химической связи между атомами.
В образовании химической связи, как правило, участвуют электроны, расположенные на наружном энергетическом уровне и слабо связанные с ядром.
Благородные газы не образуют химических связей. Они существуют в виде изолированных атомов (одноатомных молекул). Наличие химической инертности благородных газов, отличающихся от других атомов заполненным внешним энергетическим уровнем, позволило учёным прийти к выводу, что при образовании химических связей атомы стремятся к завершению своего внешнего электронного уровня.
В основе химической связи всегда лежит электростатическое взаимодействие заряженных частиц — ядер и электронов. Образование химической связи связано с перекрыванием электронных орбиталей и перераспределением электронной плотности между взаимодействующими атомами.
В зависимости от разности электроотрицательностей связанных атомов возможно возникновение трёх типов химической связи: ковалентной , ионной и металлической .
Ковалентная связь возникает между атомами неметаллов, т. е. между атомами с высокой электроотрицательностью. При взаимодействии одинаковых атомов неметаллов (\(χ\) больше \(2\), и электроотрицательности примерно равны) образуется ковалентная неполярная связь. Если взаимодействуют атомы, для которых разность \(χ\) от \(0,4\) до \(2\), то образуется ковалентная полярная связь.
Ионная связь возникает между атомами металлов и неметаллов, электроотрицательности которых различаются значительно (разность \(χ\) больше \(2\)).
Источник