1.7. Электрические и магнитные поля
Как может передаваться действие одного тела на другое, если они находятся на некотором расстоянии?
Отвечая на поставленный вопрос, прежде всего необходимо исследовать, нет ли между этими телами каких-либо связей, какой-либо среды, способной передавать взаимодействие. Попытки объяснить передачу действия подобным образом можно найти ещё у древних мыслителей: «Тело не может действовать там, где его нет».
В эпоху зарождения классического естествознания французский ученый Рене Декарт (1596-1650 гг.) провозгласил принцип согласно которому действие передается через среду в течение некоторого времени.
Принцип, согласно которому действие передается через промежуточное звено, через посредника с конечной скоростью, лежит в основе концепции близкодействия.
Когда был открыт закон Всемирного тяготения, и Ньютоном было установлено, что причиной движения являются силы, большинство ученых склонны были считать, что взаимодействие определяется лишь значением силы в той или иной точке пространства. По представлениям большинства ученых того времени, для передачи взаимодействия не нужен никакой посредник. Утвердился принцип дальнодействия (действие на расстоянии) как способ передачи действия тяготения через пустоту и мгновенно.
Закон Кулона, состоявшийся под впечатлением открытого Ньютоном закона Всемирного тяготения, также трактует взаимодействие зарядов как «действие на расстоянии». Кулон был убежден, что взаимодействие зависит только от величин зарядов и от расстояния между ними, а «пустота» между зарядами никакого участия во взаимодействии не принимает.
Концепция дальнодействия или действия на расстоянии: тела способны мгновенно «чувствовать» присутствие друг друга без какой-либо среды.
На разных этапах развития науки доминировала либо одна, либо другая концепции. Они противостояли друг другу, ученые приводили аргументы, математические доказательства в подтверждение истинности теории, сторонниками которой они являлись. Иногда авторитет ученых, склонных придерживаться той или иной концепции, тоже был аргументом, доказывающим справедливость теории.
К XVIII в. оформляются две точки зрения на проблему взаимодействия. Одна основана на принципе дальнодействия, другая — на принципе близкодействия.
В 30-е г. xix в. был совершен поворот к концепции близкодействия, но только на более высоком уровне представлений. Это сделал великий английский естество испытатель М. Фарадей (1791 – 1867 гг.) – творец основ электромагнетизма. Фарадей выдвигает концепцию поля. Согласно Фарадею, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое, магнитное (если заряд движется) поля. Поле одного заряда действует на другой заряд и наоборот. Взаимодействие передается не мгновенно, а с конечной скоростью.
Физические поля — это первичные понятия. Поле — это одна из форм существования материи.
Поле реально, оно не зависит от наших знании о нем. Наши представления о том, что такое поле, образуются в результате опытного исследования его свойств.
!Электрическое поле создается зарядами.
Главное свойство электрического поля — это способность действовать на электрические заряды (как на подвижные, так и на неподвижные) с некоторой силой.
По действию на заряд устанавливается присутствие поля, распределение его в пространстве, изучаются все его характеристики.
Силовой характеристикой электрического поля яаляется физическая величина, называемая напряженностью электрического поля. Для исследования силового действия здектрического поля заряда q нужно поместить в это поле пробный заряд q0. Практически это будет какое-то заряженное тело, которое имеет малые размеры и малый заряд, чтобы можно было пренебречь влиянием этого заряда на изучаемое поле. Согласно закону Кулона на пробный заряд будет действовать сила:
Найдем отношениеF к q0:
Отношение, как видно, не зависит от выбора пробного заряда и характеризует поле в данной точке. Это отношение зависит только от величины заряда, который создает поле, и от расстояния от источника поля до точки, в которую помещают пробный заряд. Абсолютно очевидно, что чем больше величина заряда, создающего поле, тем больше отношение; чем дальше помещают пробный заряд от источника поля, тем меньше величина, определяемая вышеуказанным отношением. Величина, определяемая этим отношением, является напряженностью Е поля в данной точке.
Напряженность электрического поля — это физическая величина, равная отношению силы, действующей со стороны поля на заряд, к величине этого заряда:
Напряженность поля — величина векторная. За направление вектора напряженности электрического поля принимается направление вектора кулоновской силы, действующей на положительный электрический заряд, помещённый в данную точку поля.
Единица напряженности электрического поля в СИ — ньютон на кулон (Н/Кл).
Если значение напряженности в одних и тех же точках пространства с течением времени не меняется, то мы имеем дело с постоянным электрическим полем. Если значение напряженности в одних и тех же точках пространства с течением времени меняется, то электрическое поле — переменное.
Электростатическое поле — электрическое поле, создаваемое неподвижными зарядами.
Мы живем в электрическом поле, напряженность которого у поверхности Земли составляет 130 Н/Кл.
Если электрическое поле создается несколькими зарядами q1, q2 . qn , то напряженность поля системы зарядов будет определяться как векторная сумма напряженности полей, связанных с каждым из зарядов в отдельности :
E = E1+ E2+ …En. (в векторном виде)
Это соотношение отражает принцип наложения (суперпозиции) полей.
В основе представлений Фарадея об электрическом поле было понятие о силовых линиях, которые расходятся во все стороны от наэлектризованных тел. Эти линии, дающие направление действия электрической силы в каждой точке, были известны уже давно. Их наблюдали и изучали как любопытное явление. Если продолговатые кристаллики диэлектрика (например, хинина) хорошо перемешать в такой вязкой жидкости, как касторка, то вблизи заряженных тел эти кристаллики выстроятся в цепочки, образуя линии.
Силовые линии по Фарадею — это наглядное изображение реальных процессов, происходящих в пространстве вблизи наэлектризованных тел или магнитов. Силовые линии помогают наглядно представить распределение поля в пространстве, и не более реальны, чем параллели и меридианы на земном шаре.
Силовые линии или линии напряженности — это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности в этой точке поля.
Вслучае поля точечного заряда силовые линии радиальные прямые, расходящиеся от заряда(рис. 6).
Направление силовых линий совпадает с направлением векторов напряженности поля. Силовые линии положительного заряда направлены от заряда, а отрицательного – к заряду.
Силовые линии электростатического поля не замкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных.
Это свидетельство того, что источниками электрического поля являются электрические заряды.
Силовые линии электростатического поля не пересекаются.
На рис. 7 изображены силовые линии электрического поля системы двух зарядов: разноименных и одноименных. Из рисунков видно, что по густоте линий можно судить о напряженности электрического поля.
Электрическое поле называется однородным, если вектор его напряженности одинаков во всех точках пространства. Пример такого поля —электрическое поле между двумя близко расположенными параллельными пластинами, равномерно заряженными по их поверхности разноименными, равными по значению зарядами.
На рис.8 показаны силовые линии такого поля. На рисунке видно, что однородное электрическое поле существует только в пространстве между пластинами.
Важнейшим свойством электрического поля как особого вида материи является наличие энергии. Поля, обладающие энергией, называются потенциальными. Электростатическое поле является потенциальным полем. Наличие энергии свидетельствует о том, что при перемещении заряда в однородном электростатическом поле совершается работа, которая не зависит от формы траектории и на замкнутой траектории равна нулю.
Перейдем к представлению магнитного поля. Всякий движущийся заряд создает в окружающем пространстве магнитное иоле, способное действовать на другие движущиеся заряды.
Главное свойство магнитного поля — это способность действовать на движущиеся заряды с определенной силой.
! Создается магнитное поле только движущимися электрическими зарядами (проводниками стоком).
Силовая характеристика магнитного поля, по причинам исторического характера, получила название не напряженность, а индукция. Принято обозначать индукцию магнитного поля буквой В. Обычно эту физическую величину вводят путем рассмотрения действия магнитного поля на маленькую пробную рамку с током. Такая рамка должна иметь малые размеры, чтобы по ее поведению можно было судить о магнитном поле в малой области пространства (в «точке»). Ток в этой рамке должен быть достаточно мал, чтобы его влиянием на источники исследуемого магнитного поля можно было пренебречь. Пробная рамка с током, помещенная в магнитное поле, будет располагаться определенным образом. Силы, действующие на нее со стороны магнитного поля, будут разворачивать рамку. Вращающий момент сил будет максимален, когда рамка ориентированна перпендикулярно магнитным линиям. Отношение максимального вращающего момента Ммах к произведению силы тока I на площадь, ограниченную рамкой, S характеризует магнитное поле в том месте, где расположена рамка. Это отношение и принимают, по определению, за модуль вектора магнитной индукции В.
Модуль вектора магнитной индукции — это физическая величина, численно равная отношению максимального вращающего момента, действующего на рамку с током со стороны магнитного поля, к произведению силы тока в рамке на площадь, ограниченную рамкой:
За единицу магнитной индукции в СИ принята единица, которая называется тесла (Тл).
Как и электрическое поле, магнитное поле удовлетворяет принципу суперпозиции: если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником.
Направление вектора магнитной индукции определяется с помощью правила буравчика или правило винта с правой нарезкой:
!Если буравчик с правой резьбой ввинчивать по направлению тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением силовых линий магнитного поля, создаваемого этим током.
Направление магнитных силовых линий в каждой точке совпадает с направлением вектора магнитной индукции.
Как и в случае электрического поля, картину силовых линий магнитного поля можно сделать «видимой». Для этого используют мелкие железные опилки, которые в магнитном поле намагничиваются и, подобно маленьким магнитным стрелкам, ориентируются вдоль силовых линий. Наблюдения за распределением магнитного поля убеждают нас, что силовые линии магнитного поля всегда замкнуты, охватывают проводник с током, который порождает поле. Поля с замкнутыми силовыми линиями являются вихревыми полями. Замкнутость силовых линий магнитного поля свидетельствует о том, что в природе нет магнитных зарядов.
Источник