Природа сопряжения двойных углерод углеродных связей

Acetyl

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH — Р Р Р Р Р М Н М Н Н Н Н Н Н Н Н Н Н Н
F — Р М Р Р Р М Н Н М М Н Н Н Р Р Р Р Р Н Р Р
Cl — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н Р М Р Р
Br — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н М М Р Р
I — Р Р Р Р Р Р Р Р Р Р ? Р ? Р Р Р Р Н Н Н М ?
S 2- М Р Р Р Р Н Н Н Н Н Н Н Н Н Н Н
HS — Р Р Р Р Р Р Р Р Р ? ? ? ? ? Н ? ? ? ? ? ? ?
SO3 2- Р Р Р Р Р Н Н М Н ? Н ? Н Н ? М М Н ? ?
HSO3 Р ? Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? ? ? ?
SO4 2- Р Р Р Р Р Н М Р Н Р Р Р Р Р Р Р Р М Н Р Р
HSO4 Р Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? Н ? ?
NO3 Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
NO2 Р Р Р Р Р Р Р Р Р ? ? ? ? Р М ? ? М ? ? ? ?
PO4 3- Р Н Р Р Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н
CO3 2- Р Р Р Р Р Н Н Н Н ? ? Н ? Н Н Н Н Н ? Н ? Н
CH3COO — Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
SiO3 2- Н Н Р Р ? Н Н Н Н ? ? Н ? ? ? Н Н ? ? Н ? ?
Растворимые (>1%) Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

Скопируйте эту ссылку, чтобы разместить результат запроса » » на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса » » содержит ошибку, нажмите на кнопку «Отправить».

Внимание, если вы не нашли в базе сайта нужную реакцию, вы можете добавить ее самостоятельно.

На данный момент доступна упрощенная авторизация через VK.
В будущем добавлю авторизацию через Гугл и Яндекс.

Здесь вы можете выбрать параметры отображения органических соединений.

Эти параметры действуют только для верхнего изображения вещества и не применяются в реакциях.

Размер шрифта
Отображение гетероатомов

Корректная работа сайта обеспечена на всех браузерах, кроме Internet Explorer.

Если вы пользуетесь Internet Explorer, смените браузер.

На сайте есть сноски двух типов:

Подсказки — помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация — такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Источник

4. Особенности углерод-углеродных связей

Одной из причин многообразия органических веществ является способность атома углерода к образованию различных типов углерод-углеродных связей.

Электронная конфигурация углерода 1s 2 2s 2 2p 2 , т. е. атом углерода имеет два неспаренных p-электрона, которые могут принимать участие в образовании двух ковалентных связей. Однако известно, что углерод, как правило, образует четыре ковалентные связи. Это объясняется тем, что при образовании ковалентных связей один из 2s-электронов переходит на свободную p-орбиталь, в результате чего появляются четыре неспаренных электрона, которые могут образовать четыре ковалентные связи с другими атомами. Но при этом одна из них будет образована за счет сферического s-электронного облака, а три – за счет p-облаков, имеющих форму гантели.

Экспериментально установлено, что в молекулах предельных углеводородов все связи атомов углерода равноценны. Это можно объяснить с привлечением представлений о гибридизации электронных облаков. Согласно теории гибридизации (Л. Полинг, 1931), в образовании химической связи могут принимать участие гибридные (комбинированные) электронные облака, форма которых отличается от форм исходных облаков.

sp 3 -гибридизация. В этом случае гибридные облака формируются за счет одного s- и трех p-облаков. Доля сферической s-орбитали в общей электронной плотности невелика, поэтому четыре гибридных облака имеют форму немного несимметричной восьмерки. Электронные облака одноименно (отрицательно) заряжены и стремятся максимально удалиться друг от друга, что достигается при их ориентации в пространстве в направлении от центра к вершинам тетраэдра (рис. 1). Углы между осями гибридных электронных облаков составляют 109º28 / . Подобным расположением химических связей

Рис. 1. sp 3 — гибридизованные орбитали

атомов углерода обусловлена зигзагообразная форма углеродных цепей предельных углеводородов и тетраэдрическое строение простейшего алкана – метана.

sp 2 -гибридизация. Этот тип гибридизации орбиталей реализуется при комбинации одной s- и двух p-орбиталей. Образующиеся три sp 2 -орбитали лежат в одной плоскости и образуют углы 120 º (рис. 2). Доля s-орбитали в гибридной орбитали увеличивается, поэтому sp 2 -орбиталь представляет собой восьмерку, одна из долей которой короче и толще, чем в sp 3 -орбитали; атомный объем уменьшается. Облако одного из p-электронов, не участвующего в гибридизации, имеет форму симметричной относительно ядра восьмерки и располагается перпендикулярно плоскости, в которой находятся гибридные орбитали. При взаимодействии sp 2 -углеродных атомов расширяются возможности перекрывания их орбиталей: наряду с перекрыванием по линии, соединяющей ядра атомов (образование σ-связи) возможно боковое перекрывание негибридных орбиталей (образование π-связи). Такая связь называется двойной связью и представляет собой комбинацию σ- и π-связей (рис. 3). Поскольку объем sp 2 -углеродного атома меньше объема sp 3 -гибридного углерода, соответственно и длина двойной связи будет меньше, чем длина одинарной.

Рис. 2. sp 2 — гибридизованные Рис. 3. Пространственное расположе-

орбитали ние орбиталей в молекуле этилена

sp-гибридизация. В гибридизации участвуют лишь две орбитали атома углерода (s- и p-). Форма гибридной орбитали еще более приближается к шарообразной, атомный объем становится еще меньше. Две гибридные орбитали, стремясь максимально удалиться друг от друга, образуют с другими атомами связи, ориентированные под углом 180 º . Две другие p-орбитали атома углерода не участвуют в гибридизации и при боковом перекрывании с подобными орбиталями другого sp-гибридного углерода образуют π-связи, расположенные во взаимно перпендикулярных плоскостях (рис. 4). Возникаю-

Рис. 4. sp-гибридизованные орбитали (а) и пространственное

расположение орбиталей в молекуле ацетилена (б)

щая при этом химическая связь носит название тройной связи – это комбинация одной σ- и двух π-связей. Атомный объем sp-гибридного углерода меньше, чем sp 2 -гибридного, поэтому тройная связь должна быть короче двойной, а ее энергия – больше. Данные о различных типах углерод-углеродных связей приведены в табл. 1.2.

Таблица 1.2. Сравнительная характеристика углерод-углеродных связей

Угол между гибридными орбиталями

Источник

Электронное строение одинарной, двойной и тройной углерод-углеродных связей в органических молекулах. Типы гибридизации углеродных атомов.

Согласно современным представлениям, необходимым условием для образования химической связи между двумя атомами является перекрывание облаков их электронов. Электрон образует связь в том направлении, в котором расположена наибольшая часть его облака, так что при этом осуществляется максимальное перекрывание облаков двух связующих электронов.

В случае простой связи (изображаемой одной валентной черточкой) максимальное перекрывание осуществляется по прямой, соединяющей два атома. Такая простая кова-лентная связь называется σ-связью, а электроны, ее образующие, — σ-электронами.

В молекуле этилена, как это установлено с помощью физических методов исследования, пять σ-связей расположены друг относительно друга под углом 120° и находятся в одной плоскости:

Однако при таком расположении связей в этилене у каждого атома углерода остается по одному неспаренному электрону. Они уже не могут образовать между атомами углерода вторую σ-связь, так как это сопровождалось бы нарушением принципа Паули. Поэтому такие неспаренные электроны атомов углерода образуют качественно иную связь. Перекрывание двух электронных облаков происходит так, что восьмерки этих облаков перпендикулярны плоскости, в которой расположены все шесть атомов молекулы этилена. Такая связь называется π-связью, а электроны, ее образующие, — π-электронами.

Двойная углерод – углеродная связь С=С состоит из σ-связиπ-связи.

Тройная углерод-углеродная связь С≡С состоит из σ-связи, возникающей при перекрыванииsp-гибридных орбиталей, и двух π-связей.

Гибридизация — это взаимодействие атомных орбиталей с близкими значениями энергии, сопровождающееся образованием новых ‘гибридных’ орбиталей.

Гибридизация — процесс, требующий затрат энергии, но эти затраты с избытком компенсируются за счет энергии, выделяющейся при образовании большего числа ковалентных связей.образующиеся ‘гибридные’ орбитали имеют форму ассимметричной гантели и резко отличаются от исходных орбиталей атома углерода.

Для атома углерода возможно три типа гибридизации:

sр 3 -гибридизация — взаимодействующиеорбитали показаны стрелками:

sр 2 -гибридизация:

sр-гибридизация:

Гибридные орбитали атома углерода способны участвовать в образовании только σ-связей, незатронутые гибридизацией р-орбитали образуют только π-связи. Именно этой особенностью определяется пространственное строение молекул органических веществ.

5. Делокализованная химическая связь: π, π- и р, π-сопряжение (бутадиен-1,3; хлорэтен).

Сопряжение – перераспределение (выравнивание) электронной плотности в сопряженной системе, приводящее к стабилизации молекулы.

Сопряжение возможно только в том случае, если все атомы, принимающие участие в этом процессе расположены в одной плоскости, т.е. должно выполняться условие копланарности.

Различают сопряженные системы с открытой цепью и замкнутые сопряженные системы. Возможны два типа сопряжения π,π-сопряжение (в сопряжении участвуют π-электроны кратной связи) и р,π-сопряжение (в сопряжении участвуют π-электроны кратной связи и р-электроны неподеленной электронной пары гетероатомов –N–, –O–, –S–).

Сопряжение – это энергетически выгодный процесс, происходящий с выделением энергии, поэтому для сопряженных систем характерна повышенная термодинамическая устойчивость. Количественно термодинамическую устойчивость можно оценить как разность энергий соединений с сопряженными двойными связями и соединений с изолированными двойными связями. Эту разность называют энергией сопряжения или энергией делокализации. Термодинамическая устойчивость соединения увеличивается с увеличением длины сопряженной цепи. Из сопряженных полиенов наиболее широко распространены в природе каратиноиды(каротин, витамин А, ретиналь).

Простейшей π,π-сопряженной системой этого типа является бутадиен-1,3, а р,π-сопряженной является хлорэтен.

Все атомы углерода находятся в sp2-гибридизации, все s связи лежат в одной плоскости, четыре негибридизованныеРz-орбитали расположены перпендикулярно плоскости s-связей и параллельны друг другу (необходимое условие для перекрывания).

Н2С = СН – СН = СН2 Н2С = СН –Cl

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Электронная природа двойной связи углерод-углерод. Цис-транс изомерия этиленовых углеводородов.

Алкины – это углеводороды, в молекулах которых два атома углерода находятся в состоянии sp-гибридизации и связаны друг с другом тройной связью.

Общая формула: CnH2n–2, где n > 2.

Особенности алкинов: 1) длина связи в алкинах равна 0,120 нм; 2) каждый атом углерода в состоянии sp-гибридизации связан с двумя другими атомами; 3) может присоединять еще два атома.

Существует два типа изомерии алкинов: 1) изомерия положения тройной связи; 2) изомерия цепи.

Первые два члена гомологического ряда – этин и пропин – изомеров не имеют.

Для бутинов возможен только один вид изомерии – изомерия положения тройной связи.

Существует два типа номенклатуры: 1) международная номенклатура: этин; пропин; 2) рациональная номенклатура: ацетилен; метиацетилен.

Физические свойства алкинов: 1) С2Н2…С4Н6 – газы; 2) С5Н8…С15Н28 – жидкости; 3) С16Н30… – твердые вещества; 4) плохо растворимы в воде.

Химические свойства алкинов: обладают большой реакционной способностью, характеризуются реакцией присоединения, тройная связь содержит две π-связи.

Алкины (ацетиленовые углеводороды) содержат тройную связь. Общая формула алкина с одной тройной связью C nH 2n–2. Название образуется от соответствующего углеводорода с добавлением суффикса -ин. В табл. 12.4 приведены первые пять алкинов.

Источник

Читайте также:  Синтез водорода конверсией природного газа
Оцените статью