5.7. Водородная связь
Атом водорода, образовавший полярную связь с атомом другого элемента, электроотрицательность которого выше электроотрицательности водорода, способен образовывать дополнительную связь с другим атомом того же или иного элемента высокой электроотрицательности. Такая связь называется водородной. Этот вид химического взаимодействия уникален и присущ только одному элементу — водороду. Ниже приведена схема образования водородной связи при взаимодействии двух полярных молекул
В образовавшейся частице связь X-H является полярной, а связь HY — водородной (водородная связь обычно обозначается пунктиром).
Водородной связи присущи следующие особенности:
1. Водородная связь является насыщаемой. Атом водорода образует лишь одну водородную связь; его партнеры могут участвовать в образовании нескольких водородных связей.
2. Водородная связь является направленной. Фрагмент Х-НY обычно является линейным, хотя в некоторых случаях может быть и угловым.
3. Энергия водородной связи невелика (8 — 40 кДж/моль) и представляет величину того же порядка, что и энергия межмолекулярного взаимодействия. Прочность водородной связи тем выше, чем больше электроотрицательность партнера водорода. Так энергия связи HF составляет 25-40 кДж/моль, связи НО — 19-21 кДж/моль, связей NH и SH — около 8 кДж/моль.
4. Водородная связь асимметрична: во фрагментах Х-НХ длина связи НХ больше длины Н-Х.
Общая теория водородной связи не разработана до настоящего времени. Можно считать, что по своей природе водородная связь имеет смешанный характер, в силу чего при ее описании следует учитывать два эффекта.
1. Электростатический эффект. В отличие от всех других элементов атом водорода имеет лишь один электрон и при потере последнего превращается не в обычный ион, а в элементарную частицу — протон. В связи с этим водород, образовавший полярную связь, может сильно притягиваться к электронным оболочкам соседних атомов, не связанных с ним ковалентно; силы межэлектронного отталкивания при этом не возникают.
2. Эффект донорно-акцепторного взаимодействия. При сильном смещении общей электронной пары, образующей полярную связь, к электроотрицательному партнеру атом водорода проявляет акцепторные свойства и способен взаимодействовать с электронными парами другого атома, хотя образующаяся при этом связь менее прочная, чем при наличии у водорода вакантной электронной орбитали.
Различают два типа водородной связи.
1. Межмолекулярная водородная связь. Образуется между двумя или несколькими молекулами, одинаковыми или различными.
Типичным примером вещества с межмолекулярными водородными связями является фтороводород, который образует ассоциаты (HF)n во всех агрегатных состояниях; при этом в газообразном фтороводороде значения n не превышают 4, а в жидком – n больше чем 4. Ассоциаты фтороводорода представляют собой цепи, состоящие из линейных (FHF) и угловых (HFH) фрагментов.
При этом длина водородной связи HF на 55% больше длины полярной связи. При достаточно высоких значениях n эти цепи могут замыкаться в циклы.
Образование ассоциатов за счет водородных связей характерно для воды. В жидкой воде образуются ассоциаты (Н2О)n, простейшим из которых является дигидроль (Н2О)2
для которого водородная связь в 1,8 раза длиннее полярной. В кристаллической воде каждый атом водорода образует одну полярную и одну водородную связь, а кислород участвует в образовании четырех связей — двух полярных и двух водородных (по числу электронных пар). Структурной единицей льда является тетраэдр, в котором центральный атом кислорода соединен с четырьмя атомами водорода, а каждый атом водорода — с двумя атомами кислорода во фрагменте ОНО
Муравьиная кислота НСООН в жидком и газообразном состояниях за счет водородных связей образует циклические димеры
2. Внутримолекулярная водородная связь образуется между атомами одной и той же молекулы. При образовании внутримолекулярной водородной связи обычно наблюдается замыкание циклов (пяти- или шестичленных); фрагмент XHY при этом может быть нелинейным. Например, для молекулы 2,6-дигидроксибензойной кислоты наблюдается образование двух внутримолекулярных водородных связей
В тоже время 3,5-дигидроксибензойная кислота образует только межмолекулярные водородные связи в силу удаленности функциональных групп друг от друга
Некоторые авторы выделяют еще и третий тип водородной связи — межатомную, примером которой считают связь в дифторогидрогенат-анионе HF2 — . Однако логичнее рассматривать дифторогидрогенат-анион и другие подобные ассоциаты как молекулярные частицы, имеющие трехцентровую связь с участием мостикового атома водорода. В пользу такого подхода свидетельствует высокая энергия связи в HF2 — (113 кДж/моль) и симметричная структура частицы.
Поскольку разрыв водородных связей требует затраты энергии, образование водородных связей определенным образом влияет на свойства вещества. Образование водородных связей повышает температуры и энтальпии кипения и кристаллизации соответствующих соединений, а также увеличивая их теплоемкость. Так, если бы в воде отсутствовали водородные связи, она кипела бы при -80 С, а кристаллизовалась бы при -100 С.
Теплоемкость воды также аномально велика и составляет при стандартных условиях 4,2 Джг -1 К -1 , что в 2-3 раза больше теплоемкости жидкостей, не образующих водородных связей. Образование водородных связей затрудняет отщепление катионов водорода при электролитической диссоциации вещества в растворах. Так, для 2,6-дигидроксибензойной кислоты, вещества с внутримолекулярными водородными связями, константа ионизации на три порядка ниже, чем для 3,5-дигидроксибензойной кислоты, молекулы которой не образуют внутримолекулярных водородных связей. Следствием образования водородных связей могут также быть аномалии плотности вещества. Так, плотность жидкой воды максимальна при 4 С, а плотность льда ниже плотности жидкой воды. Эта аномалия может быть объяснена ажурной структурой льда, обусловленной образованием большого числа водородных связей и наличием в результате этого полостей в кристаллической структуре воды. При плавлении льда примерно 10% водородных связей разрушается, и плотность воды возрастает. Отметим также, что образование водородных связей между растворителем и растворенным веществом благоприятствует увеличению растворимости.
Источник
3. Водородная связь
Водородная связь — это взаимодействие, возникающее между положительно заряженным атомом водорода и намного более электроотрицательным атомом, чаще всего кислорода, азота или фтора.
Это взаимодействие в несколько раз сильнее межмолекулярных сил, но в десять — пятнадцать раз слабее ковалентной связи.
Водородная связь образуется за счёт электростатического притяжения заряженных атомов, а также некоторый вклад в её возникновение вносит донорно-акцепторное взаимодействие. Из-за поляризации у атома водорода частично освобождается электронная орбиталь, а в атомах фтора, кислорода и азота есть пары электронов. Атом водорода выступает акцептором электронов, атом другого неметалла — их донором.
Водородная связь бывает межмолекулярной (в воде, аммиаке, фтороводороде, спиртах, карбоновых кислотах), а также внутримолекулярной (в многоатомных спиртах, белках, нуклеиновых кислотах).
Водородная связь значительно повышает температуры кипения и плавления веществ, а также их взаимную растворимость.
Рассмотрим влияние водородной связи на температуры кипения водородных соединений неметаллов \(IV\)–\(VII\) групп.
Температуры кипения зависят от молекулярных масс веществ и должны возрастать в каждом ряду. Но для воды, аммиака и фтороводорода эти значения температур не подчиняются общей закономерности. Причина такого явления — возникновение водородной связи.
Водородная связь образуется не только между одинаковыми молекулами, но и между разными. Например, такая связь возникает между молекулами спиртов и воды, что обуславливает их способность смешиваться друг с другом. Так, метанол, этанол, пропанол, этиленгликоль, глицерин растворяются в воде неограниченно благодаря образованию водородных связей.
Водородные связи широко встречаются в природе и оказывают значительное влияние на свойства веществ. Они значительно повышают температуры плавления и кипения веществ, влияют на их растворимость в воде.
Благодаря образованию водородных связей вода, метанол, этанол, уксусная кислота и многие другие вещества при обычных условиях находятся в жидком состоянии.
Водородные связи обуславливают вторичную (спиралевидную) структуру белков, а также соединяют две комплементарные цепи ДНК в единое целое.
Источник
Водородная химическая связь
Между атомами водорода и атомом элемента, обладающим высокой электроотрицательностью, возникает особый тип связи – водородная химическая связь. Она может образовываться не только внутри молекулы, но и между соседними молекулами.
Общее описание
Электроотрицательность – способность атома удерживать валентные электроны на внешнем энергетическом уровне или количественная характеристика, показывающая, с какой силой притягиваются электроны к ядру атома. Наиболее электроотрицательными элементами являются фтор, азот и кислород.
Сильное электростатическое взаимодействие между атомом водорода и электроотрицательными атомами обуславливается небольшими размерами атома водорода и силой притяжения атомов элементов. В результате возникает частный случай ковалентной полярной связи. Примерами водородной химической связи являются:
- плавиковая кислота (HF);
- вода (H2O);
- аммиак (NH3);
- соляная кислота (HCl);
- сероводород (H2S).
Наличие водородной связи обуславливает физические и химические свойства вещества. В частности определяет температуру плавления, кипения, растворимость, кислотность.
Особенностью связи является её невысокая прочность и распространённость, особенно в органических веществах.
Типы
Водородная связь бывают двух типов:
- межмолекулярная, возникающая между несколькими однотипными молекулами;
- внутримолекулярная, возникающая внутри одной молекулы.
Способ образования связи в обоих типах одинаковый. Разница только в том, что с помощью межмолекулярной водородной связи образуются цепочка молекул, а при внутримолекулярной связи водород «сцепляется» с атомами внутри молекулы.
Например, молекула воды образована одним атомом кислорода и двумя атомами водорода. За счёт высокой электроотрицательности кислород, на внешнем энергетическом уровне которого шесть электронов, притягивает единственные электроны двух атомов водорода. Две пары электронов кислорода остаются свободными. При этом у водорода освобождается орбиталь. Другая аналогичная молекула может присоединиться в месте свободных электронных пар атома кислорода, заполнив освободившуюся орбиталь водорода. Возникает межмолекулярная водородная связь.
Аналогичным образом соединяются молекулы плавиковой кислоты и аммиака. Однако связь между азотом и водородом будет слабее, чем между водородом и кислородом. Также молекулы плавиковой кислоты сильнее притягиваются друг к другу, чем молекулы воды. Это объясняется величиной электроотрицательности.
Внутримолекулярная водородная связь чаще всего возникает внутри сложных молекул органических веществ – белков, ДНК, аренов. Например, водородная связь образуется в молекуле салициловой кислоты между атомом водорода гидроксильной группы и кислорода, входящего в функциональную группу -СООН.
Водородные связи графически изображаются точками.
Что мы узнали?
Между атомами водорода и атомами неметаллов возникает водородная связь, основанная на электростатическом взаимодействии атомов. Это частный случай ковалентной полярной связи, характеризующийся взаимодействием водорода и атомов с высокой электроотрицательностью. Связь бывает двух типов: межмолекулярная, возникающая между молекулами вещества, и внутримолекулярная, возникающая между водородом и атомом другого элемента в одной молекуле. Водородная связь присуща неорганическим и органическим веществам.
Источник