Природа токов в полупроводниках

1.5. Токи в полупроводниках

Токи в полупроводниках создаются направленным движением носителей заряда и по своей природе являются токами электрической конвекции. В общем случае движение носителей заряда обусловлено двумя процессами: дрейфом под действием сил поля и диффузией за счет существования градиента концентрации. Учитывая то, что перемещаются как электроны, так и дырки, плотность полного тока должна содержать четыре составляющих:

j = jпров.n + jпров.p + jдиф.n + jдиф.p .

Ток проводимости

Ток проводимости создается перемещением носителей заряда под действием сил поля. Плотность электронного тока проводимости равна:

а плотность дырочного тока проводимости равна:

где n и p — средние направленные скорости движения электронов и дырок соответственно.

Средняя скорость дрейфа носителей заряда определяется ускорением а и средним временем пробега :

Это уравнение можно представить в более простом виде:

= · , (1.37)

где — подвижность носителей заряда, определяемая длиной свободного пробега и тепловой скоростью .

Таким образом, плотность электронного тока проводимости равна:

jпров.n= q· n ·n ·  , (1.38)

а плотность дырочного тока равна:

jпров.p= q· p · m p· e , (1.39)

Результирующая плотность тока проводимости равна:

jпров= jпров.n+ jпров.p.= q( n ·n + p ·p )=·  , (1.40)

где  = q( n ·n + p ·p) — удельная электрическая проводимость полупроводника.

В собственном полупроводнике ni = pi , поэтому

i= q· ni (n +p) ; (1.41)

у электронного полупроводника nn >> pn, поэтому

n= q· nn ·n ; (1.42) у дырочного полупроводника pp >> np, поэтому

s p= q· pp ·p . (1.43)

Из приведенных уравнений следует, что удельная электрическая проводимость полупроводников определяется концентрацией подвижных носителей заряда, зависящей от концентрации примесей и температуры, и подвижности носителей заряда. Подвижность, в свою очередь, зависит от температуры, концентрации примесей и напряженности электрического поля.

П ри комнатной температуре подвижность электронов в германии составляет 3900 см 2 /В· с , а в кремнии 1400 см 2 /В· с, подвижность дырок в германии равна 1900 см 2 /В· с, а в кремнии 500 см 2 /В· с. С повышением температуры уменьшается длина свободного пробега носителей заряда и возрастает тепловая скорость движения носителей заряда ( ). Поэтому с ростом температуры подвижность убывает по закону . Зная зависимость подвижности и концентрации носителей заряда от температуры можно установить температурную зависимость проводимости (рис. 1.14), которая в основном подобна температурной зависимости концентрации носителей заряда, приведенной на рис. 1.7. В области низких температур  n и  p возрастают с ростом температуры из-за увеличения числа ионизированных примесных атомов. В рабочем интервале температур концентрация подвижных носителей заряда сохраняется приблизительно постоянной и равной концентрации примесей, а подвижность уменьшается, поэтому уменьшаются  n и  p. В области высоких температур резко увеличивается тепловая генерация носителей заряда и снижение подвижности не играет существенной роли. Удельная электрическая проводимость собственного полупроводника зависит от температуры по экспоненциальному закону и уменьшение подвижности не имеет принципиального значения.

Читайте также:  Природа наше все эссе

При невысокой концентрации примесей до 10 15 — 10 16 см -3 подвижность практически не зависит от величины концентрации. При более высокой концентрации примесей ионизированные примесные атомы создают вокруг себя кулоновское поле, искривляющее траектории движения носителей заряда, в результате чего уменьшается длина свободного пробега и соответственно подвижность. В интервале концентраций примеси 10 15 — 10 19 см -3 подвижность изменяется примерно на порядок.

Источник

1.2.Электрический ток в полупроводниках. Полупроводниковые приборы.

К полупроводникам относятся материалы проводимость, которых больше, чем у диэлектриков, поменьше, чем у проводников. К полупроводникам относят кремний (Si), фосфор(P), германий (Ge), индий (In), мышьяк (As).

Полупроводники имеют ряд особенностей:

  1. Электрический ток в полупроводниках обусловлен как движением свободных электронов, так и движением связанных электронов, так называемых дырок. Поэтому различают электронную и дырочную проводимости. Место, покинутое электронами условно положительно заряжено – дырка. Полупроводники, имеющие преимущественно электронную проводимость, называются полупроводниками (-)n-типа. Полупроводники, имеющие преимущественно дырочную проводимость , называются полупроводниками (+)р-типа.
  2. Проводимость полупроводников очень сильно зависит от температуры, эта зависимость в десятки раз больше, чем у металлов. С увеличением температуры проводимость полупроводников увеличивается, а сопротивление уменьшается, т.к. увеличивается количество пар носителей зарядов ē и дыр.
  3. Проводимость полупроводников сильно зависит от примесей и называется примесной проводимостью. Проводимость чистых полупроводников совсем невелика, чтобы увеличить проводимость к чистому полупроводнику добавляют примесь.

рис.44 Примесь может увеличить во много раз либо число свободных электронов, либо дырок. В первом случае (рис.44(а)) примесь выполняет роль донора (отдает электроны) – проводимость n – типа, а во втором (рис.44(б)) – роль акцептора (отбирает электроны) – проводимость р – типа.

Полупроводниковый диод p-n переход.

Полупроводниковый прибор, имеющий одностороннюю проводимость, основанный на работе p-n перехода. Ток через диод может проходить только в одном направлении. На границе раздела двух полупроводников с разной проводимостью, вследствие разной концентрации электронов и дырок, возникает диффузия, в результате которой образуется разность потенциалов (в области n– типа возникает (+) заряд, а в области р – типа (-) заряд). Имеет место напряженность поля Евн Если приложить к р – n– переходу внешнее поле Е0, то в зависимости от его направления, будет следующее: 1. Е0совпадает по направлению с Евн; Е = Е0+ Евн, размеры ℓ увеличатся и тока не будет 2. Если Е0 противоположно Евн, то Е = Евн – Е0; Евн = Е0; Е = 0 через переход будет протекать электрический ток. Вольт-амперная характеристика полупроводникового диода.

Читайте также:  Природа наш дом лепка

Полупроводниковый триод

Полупроводниковый триод состоит из двух полупроводников одного типа проводимости разделенных тонким слоем полупроводника другого типа проводимости (p-n-p) или (n-p-n). Ток в этой системе регулируется засчет напряжения между базой и эмиттером, изменение тока в цепи эмиттера будет вызывать изменение тока в цепи коллектора, причем изменение напряжения будет значительным (усиление напряжения). П/nтриоды (транзисторы) так же как и электронные лампы – триоды применяются для усиления и генерирования электрических колебаний. Транзисторы имеют ряд преимуществ перед электронными лампами — не требуют питания для накала катода, виброустойчивы, малогабаритны и др., однако их характеристики зависят от температуры.

Источник

Физика. 10 класс

§ 37. Электрический ток в полупроводниках. Собственная и примесная проводимости полупроводников

Полупроводники — широкий класс как неорганических, так и органических веществ в твёрдом или жидком состоянии. Полупроводники обладают многими замечательными свойствами, благодаря которым они нашли широкое применение в различных областях науки и техники. Каковы особенности строения полупроводников?

Рис.

Зависимость сопротивления полупроводников от температуры и освещённости. Удельное сопротивление полупроводников находится в пределах от 10 –6 до 10 8 Ом · м (при Т = 300 К), т. е. во много раз меньше, чем у диэлектриков, но существенно больше, чем у металлов. В отличие от проводников удельное сопротивление полупроводников резко убывает при увеличении температуры, а также изменяется при изменении освещения и введении сравнительно небольшого количества примесей. К полупроводникам относят ряд химических элементов (бор, углерод, кремний, германий, фосфор, мышьяк, сурьма, сера, селен, теллур и др.), множество оксидов и сульфидов металлов, а также других химических соединений.

Изучить свойства полупроводников можно на опытах. Соберём электрическую цепь, состоящую из источника тока, полупроводника и миллиамперметра ( рис. 215 ). Из опыта следует, что при нагревании полупроводника сила тока в цепи возрастает. Возрастание силы тока обусловлено тем, что при увеличении температуры сопротивление полупроводника уменьшается.

Читайте также:  Природа пакулова 5 класс

Рис.

Проведём ещё один опыт. Изменяя освещённость поверхности полупроводника, наблюдаем изменение показаний миллиамперметра ( рис. 216 ). Результаты наблюдений означают, что при освещении поверхности полупроводника его сопротивление уменьшается.

Таким образом, уменьшить сопротивление полупроводника можно, либо нагревая его, либо воздействуя электромагнитным излучением, например освещая его поверхность.

Источник

Оцените статью