Природного газа путем охлаждения

Содержание
  1. Сжиженный природный газ (LNG) как автомобильное топливо
  2. Получение и хранение сжиженного природного газа
  3. Сжиженный природный газ как автомобильное топливо
  4. Устройство топливной системы автомобиля на СПГ
  5. ПНГ для охлаждения природного газа
  6. Попутный нефтяной газ (ПНГ) является ценнейшим химическим сырьем, содержащим значительное количество метана, этана, пропана и бутана. По отношению к ПНГ как к газовому ресурсу российская экономика проявляет весьма расточительное отношение. В настоящее время уровень утилизации ПНГ в России составляет 73%. Таким образом, проблема использования ПНГ является актуальной. Попутный нефтяной газ содержит около 60% метана и до 40% – тяжелые УВ, в зависимости от месторождения. Данные компоненты ПНГ являются ценнейшими энергоресурсами. Какие технологии, сберегающие эти ресурсы, предлагают сегодня российские ученые?

Сжиженный природный газ (LNG) как автомобильное топливо

Сжиженный природный газ (СПГ) (англ. Liquefied Natural Gas) – это природный газ, охлажденный до температуры сжижения. СПГ представляет собой бесцветную жидкость без запаха, которая не токсична и не вызывает коррозии. Кроме того, это не самовозгорающийся газ, что выгодно отличает его в плане безопасности. В жидком состоянии газ занимает гораздо меньший объем. Одинаковое количество СПГ и природного газа отличаются по объему в 600 раз. Чтобы наглядно представить себе это различие, сравните надувной пляжный мяч и шарик для пинг-понга.

Энергетический рынок огромен и добыча природного газа увеличивается с каждым годом. Поэтому роль СПГ, наряду со сжатым природным газом, газоконденсатными жидкостями (NGL) и GTL (газ в жидкость) в обозримом будущем будет возрастать.

Получение и хранение сжиженного природного газа

Сжижение природного газа – не новая технология, ей уже более ста лет. Она была запатентована в США в 1914 году, а через три года был построен первый завод. С тех пор производство СПГ прочно вошло в нефтегазовый сектор, однако повышенный интерес к нему стал проявляться только в последние годы в связи с ростом экологических требований к источникам энергии.

СПГ производят путем охлаждения природного газа, состоящего в основном из метана, до точки сжижения -162° по Цельсию. В процессе сжижения от газа отделяются и отфильтровываются кислород, сера, азот, двуокись углерода и вода. Поэтому полученный продукт отличается высокой чистотой. После сжижения газ транспортируется в жидком состоянии и в пункте назначения может быть опять восстановлен в газообразную фазу на специальных СПГ терминалах (регазификация).

В настоящее время существует несколько промышленных технологий сжижения природного газа, в основе которых лежит один из двух способов: каскадный процесс или процесс Линде (разновидностью его является процесс Клода).

В каскадном процессе газ, сжижающийся при более высокой температуре, используется в жидком виде для охлаждения и сжижения второго газа, находящегося под избыточным давлением, температура сжижения которого ниже. Второй сжиженный газ, в свою очередь, используется в третьем каскаде для охлаждения и сжижения еще более трудно конденсируемого газа и т.д. Для сжижения природного газа достаточны три цикла с использованием в качестве хладагентов пропана, этилена и метана.

Читайте также:  Оснащение уголка природы во второй младшей группе

Процесс Линде основан на эффекте Джоуля-Томсона. Предварительно охлажденный и находящийся под давлением газ пропускается через теплоизолированный трубопровод, в котором имеется сужение (дроссель) или пористая перегородка. За дросселем газ расширяется, в результате чего происходит его дальнейшее охлаждение. После нескольких таких циклов газ достигает температуры сжижения.

Хранится сжиженный природный газ при давлении от 3 до 10 бар в емкостях с вакуумной изоляцией. Температура хранения варьируется в зависимости от состава газа и давления. При атмосферном давлении температура СПГ не должна превышать -162° C.

Сжиженный природный газ как автомобильное топливо

Газ как автомобильное топливо

Одним из главных преимуществ СПГ является снижение выбросов СО2 и других парниковых газов (до 30% по сравнению с бензином и дизтопливом). Это делает его весьма востребованным в контексте общей тенденции к более экологичным энергетическим решениям. Применение СПГ также позволяет укладываться в строгие современные нормы выбросов, чего не удается достичь с другими видами топлив.

Сжиженный природный газ (как и сжатый газ) существенно снижает коррозию и износ частей двигателя по сравнению с бензином. Это связано с тем, что газ не смывает масляную пленку со стенок цилиндра при холодном пуске. Дизельные моторы, работающие на природном газе, зачастую проходят свыше 800 000 км без капремонта.

Молекула метана обладает высокой стойкостью, поэтому октановое число природного газа составляет от 105 до 120 единиц, что является причиной его высокой антидетонационной стойкости. Выбросы двигателей, работающих на газе, чище, с меньшим содержанием углерода и твердых частиц (сажи).Объемная плотность энергии СПГ примерно в 2,4 раза выше, чем у сжатого природного газа. Плотность энергии сжиженного природного газа сравнима с пропаном и этанолом, но составляет лишь 60% плотности энергии дизтоплива, и 70% бензина.

Широкому коммерческому использованию СПГ препятствует более высокая стоимость производства и необходимость хранения в дорогостоящих криогенных резервуарах. Однако с учетом истощения запасов нефти, повышения экологических требований, газификация автомобильного транспорта, особенно тяжелых грузовиков и автобусов будет возрастать.

Устройство топливной системы автомобиля на СПГ

В качестве примера рассмотрим топливную систему HPDI 2.0 (High Pressure Direct Injection) канадской компании Westport – ведущего производителя оборудования для сжиженного природного газа. Система HPDI 2.0 заменяет приблизительно 95% дизельного топлива природным газом. Технология Westport HPDI является единственной, которая максимально использует природный газ, сохраняя при этом мощность, крутящий момент, КПД и топливную эффективность, достигаемые при работе на дизтопливе. При этом значительно сокращаются эксплуатационные расходы, так как природный газ намного дешевле. Установка HPDI 2.0 не требует никакой переделки основных компонентов стандартного дизельного мотора. Ее также можно легко приспособить для работы на сжатом природном газе.

Основой топливной системы двигателя является инновационная форсунка с двойной концентрической иглой, разработанная в сотрудничестве с Delphi. Она позволяет впрыскивать под высоким давлением в камеру сгорания небольшое количество дизельного топлива и большие объемы природного газа. Природный газ подается в конце такта сжатия. Однако для его воспламенения при давлении, которое обеспечивает обычный дизельный двигатель, требуется более высокая температура. Поэтому для облегчения воспламенения в цилиндр предварительно впрыскивается небольшое количество дизельного топлива с последующим основным впрыском природного газа. Горящее дизтопливо мгновенно поджигает горячие продукты сгорания в цилиндре, а те, в свою очередь, впрыскиваемую следом порцию природного газа.

Читайте также:  Кадастры природных ресурсов виды кадастров природных ресурсов

Сжиженный природный газ хранится в специальном баке, в котором смонтирован оригинальный криогенный насос. Из бака газ подается в испаритель, использующий тепло охлаждающей жидкости двигателя. На выходе из испарителя газ имеет температуру около 40° C при давлении 30 МПа. Далее газ фильтруется и направляется в модуль топливоподготовки, а затем подается к форсункам.

Источник

ПНГ для охлаждения природного газа

Попутный нефтяной газ (ПНГ) является ценнейшим химическим сырьем, содержащим значительное количество метана, этана, пропана и бутана. По отношению к ПНГ как к газовому ресурсу российская экономика проявляет весьма расточительное отношение. В настоящее время уровень утилизации ПНГ в России составляет 73%. Таким образом, проблема использования ПНГ является актуальной. Попутный нефтяной газ содержит около 60% метана и до 40% – тяжелые УВ, в зависимости от месторождения. Данные компоненты ПНГ являются ценнейшими энергоресурсами. Какие технологии, сберегающие эти ресурсы, предлагают сегодня российские ученые?

Для переработки ПНГ предлагается использовать установку вихревого сжижения пропан-бутановых фракций. Установка состоит из трех блоков. Первый блок включает последовательное охлаждение ПНГ с выделением метановой фракции и вихревое разделение оставшейся после охлаждения смеси газов. Во втором блоке происходит осушка газов и сбор пропан-бутановой фракции. Третий блок предназначен для сбора метана с последующей подачей в газопровод. Схема установки представлена на рисунке 1.

РИС. 1. Схема установки вихревого сжижения пропан-бутановых фракций попутного нефтяного газа

Агрегат сжижения (блок 1) содержит: трубопровод исходного потока попутного газа с сепаратором-водоотделителем 4, трубопровод осушенного исходного газа 5, регенеративный теплообменник предварительного охлаждения исходного осушенного газа 6, регенеративный теплообменник глубокого охлаждения 7, трубопровод метановой фракции газа 8, эжектор 9, нагнетатель 10, трубопровод «горячей» метановой фракции газа 11, турбодетандер 13, турбокомпрессор 14, электродвигатель 15, вихревую трубу 16.

Агрегат сепарации (блок 2) содержит: трубопровод отсепарированной метановой фракции газа 17, трубопровод холодного газа 18, трубопровод отвода влажного газа 19, трубопровод осушенного газа 20, сепаратор жидких пропан-бутановых фракций 21, сепаратор влаги 22, сборную емкость жидкого пропан-бутана 23, трубопровод отвода к потребителю жидкой пропан-бутановой смеси 24, трубопровод отводимой влаги 25.

Агрегат компримирования метановых фракций попутного газа (блок 3) содержит: эжектор 9, газопровод с нагнетателем газа 10.

Предлагается разместить данную установку непосредственно на месторождении. При наличии близлежащей компрессорной станции (КС) целесообразно разместить установку на территории данной КС. Пропан-бутановые фракции можно использовать в качестве хладагента в парокомпрессионных холодильниках для охлаждения природного газа на компрессорных станциях (КС). В свою очередь метановая фракция может быть присоединена в основному потоку природного газа для дальнейшей транспортировки или использована на нужды КС (в качестве топлива для ГТУ).

Читайте также:  Особенности рынка капитала земли природных ресурсов

Охлаждение природного газа перед транспортировкой по магистральному трубопроводу необходимо для понижения его температуры после компрессора во избежание оплавки изоляции трубопровода. Понижение температуры природного газа также приведет к понижению вязкости, что в свою очередь обеспечивает понижение гидравлических потерь, повышает скорость и обеспечивает большую производительность трубопровода.

Наибольшее распространение в настоящее время на КС получили аппараты воздушного охлаждения газа (АВО). Недостатками известных АВО являются большое энергопотребление, значительная металлоемкость и трудоемкость изготовления, что делает их дорогими в изготовлении и эксплуатации. Также АВО способны охладить газ только до температуры окружающей среды, что является главным недостатком. Недостаточное охлаждение газа может привести к таянию грунтов и разрушению трубопровода.

Компримирование газа на КС приводит к повышению его температуры на выходе станции. Было выдвинуто предложение: охлаждать природный газ перед компримированием с условием достижения необходимой температуры природного газа после компримирования. Численное значение этой температуры определяется ее начальным значением на входе КС и степенью повышения давления газа. Минимальная температура охлаждения, при которой не возникает проблема гидратообразования, составляет -5 ᵒ С. На рисунке 2 представлена зависимость температуры газа на выходе из центробежного нагнетателя от температуры на входе. Из рисунка видно, что температура газа на выходе не превысит 21 ᵒ С, если на входе она будет порядка -5 ᵒ С.

РИС. 2. Зависимость температуры природного газа на выходе из компрессора от температуры на входе в компрессор

Снижение температуры копримируемого газа способствует снижению мощности, потребляемой нагнетателями (рисунок 3). Если температура газа на входе +8 ᵒ С, то мощность, потребляемая нагнетателями, составляет 32,8 МВт, а если температура газа составляет -5 ᵒ С – 31,3 МВт. Данный процесс представлен на графике красным цветом.

РИС. 3. Зависимость мощности, потребляемой нагнетателями, от температуры природного газа на входе в нагнетатель

Основываясь на предыдущих выводах, был разработан принципиально новый вариант охлаждения природного газа на КС. В данном случае применятся комбинация АВО и парокомпрессионного холодильного агрегата для охлаждения газа перед компримированием. Такая технология особенно актуальна в районах Крайнего Севера, где на выходе из компрессорной станции температура должна поддерживаться в диапазоне от -5 до +2ᵒС во избежание растепления вечномерзлых грунтов.

Был произведен расчет каждого теплообменного аппарата, исходя из результатов которого была составлена комбинация данных аппаратов в зависимости от температуры окружающей среды, достигаемой температуры и потребляемой мощности (таблица 1).

ТАБЛИЦА 1. Режим работы холодильного комплекса

Температура окружающей среды

Источник

Оцените статью