Синтез высокомолекулярных соединений
Природные (естественные) высокомолекулярные соединения образуются в процессе биосинтеза в клетках растений и живых организмов, и для использования выделяются из растительного и животного сырья с помощью экстракции, фракционного осаждения и других методов.
Природные неорганические высокомолекулярные соединения образуются в результате геохимических процессов, происходящих в земной коре.
Искусственные высокомолекулярные соединения получают путем химической модификации природных высокомолекулярных соединений за счет протекания химических реакций природного полимера с различными природными агентами.
Так, например, сырьем для целого ряда искусственных высокомолекулярных соединений служит древесина или хлопковая целлюлоза, путем обработки которой смесью азотной и серной кислоты получают нитраты целлюлозы, один из которых коллоксилин, используется в качестве основного компонента (связующего) для получения целлулоидного этрола, пленок и лаков.
При взаимодействии целлюлозы с уксусным ангидридом получаются уксуснокислые эфиры целлюлозы — ацетаты целлюлозы, которые используются для получения ацетатного шелка, ацетилцеллюлозного этрола, лаков.
Синтетические высокомолекулярные соединения получают из низкомолекулярных веществ — мономеров — по реакциям полимеризации или поликонденсации.
Синтез высокомолекулярного вещества из низкомолекулярных веществ (мономеров) возможен лишь только в том случае, если молекула мономера может взаимодействовать по крайней мере с двумя другими молекулами, т.е. если исходное вещество имеет в своей структуре двойные связи или является по меньшей мере бифункциональным, т.е. содержит не менее двух функциональных групп, которые могут взаимодействовать между собой. К функциональным группам относятся кислород-азот-серосодержащие группы типа
и др.
Характерной особенностью высокомолекулярных соединений является влияние условий проведения синтеза на свойства образующегося продукта. Этим синтез высокомолекулярных соединений отличается от синтеза низкомолекулярных веществ, где изменение условий проведения реакции влияет только на количественный выход продукта.
В зависимости от метода и условий синтеза высокомолекулярного соединения изменяется его средняя молекулярная масса, а также количество макромолекул различной длины (изменяется полидисперсность полимера).
Величина средней молекулярной массы и степень полидисперсности влияют на возможность формирования физической структуры высокомолекулярного соединения, его физико-химические и физико-механические свойства.
В настоящее время известно четыре основных метода синтеза высокомолекулярных соединений:
3. Ступенчатая полимеризация;
Наиболее распространенными из них являются два первых метода.
Полимеризация представляет собой цепную реакцию получения высокомолекулярных соединений, в ходе которой молекулы мономера последовательно присоединяются к активному центру, находящемуся на конце растущей цепи.
Реакция полимеризации характерна для соединений с двойными связями, число и характер которых в молекуле мономера могут быть различными.
Полимеризация не сопровождается выделением побочных продуктов и, следовательно, протекает без изменения элементарного состава реагирующих веществ.
Активными центрами в реакциях полимеризации могут являться либо свободный радикал, либо ион. В зависимости от этого различают радикальную или ионную полимеризацию.
При радикальной полимеризации активными центрами являются свободные радикалы — электронейтральные частицы, имеющие один неспаренный электрон, благодаря чему свободные радикалы легко вступают в реакции с различными мономерами.
При ионной полимеризации активными центрами являются положительно и отрицательно заряженные частицы — ионы, образующиеся в присутствии катализаторов, в качестве которых выступают соединения металлов, легко отдающие или принимающие электроны.
В отличие от инициаторов радикальной полимеризации, катализаторы, активирующие процесс ионной полимеризации, в ходе протекающих реакций не расходуются и не входят в состав полимера.
Поликонденсация — это реакция образования высокомолекулярных соединений из нескольких молекул мономеров одинакового или различного строения, протекающая по механизму замещения функциональных групп.
Реакции поликонденсации протекают с выделением низкомолекулярных продуктов (воды, аммиака, спирта, хлористого водорода и др.), вследствие чего элементарный состав образующегося полимера отличается от элементарного состава исходного вещества — мономера. Непременным условием протекания реакции поликонденсации является содержание в мономерах не менее двух функциональных групп (- ОН, -СООН, NH2 и др.). Функциональность исходных веществ оказывает большое влияние на строение и свойства получаемых продуктов.
В том случае, если в качестве мономеров используются три- или тетрафункциональные мономеры, реакция их поликонденсации приводит к образованию пространственно-сшитых высокомолекулярных соединений.
Известно несколько способов проведения реакций синтеза (полимеризации или поликонденсации) высокомолекулярных соединений:
полимеризация и поликонденсация в блоке или массе;
полимеризация и поликонденсация в растворе;
полимеризация и поликонденсация на поверхности раздела фаз (эмульсионная или суспензионная);
полимеризация и поликонденсация в расплаве;
полимеризация и поликонденсация в твердой фазе;
полимеризация в газовой фазе.
Каждый из применяемых методов проведения реакций синтеза высокомолекулярных соединений имеет свои достоинства и недостатки, с учетом которых и производится выбор метода синтеза высокомолекулярного соединения, технологического режима его осуществления, требуемой чистоты получаемого продукта и технологии его переработки с целью изготовления тех или иных изделий, а также необходимости получения материалов и изделий с оптимальным комплексом потребительских свойств.
Источник
Полимеры
Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть). |
Например , полиэтилен, получаемый при полимеризации этилена CH2=CH2:
…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2—CH2-)n
Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.
Соединения, из которых образуются полимеры, называются мономерами.
Например , пропилен (пропен) СН2=СH–CH3 является мономером полипропилена
Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.
Мономеры – низкомолекулярные вещества, из которых образуются полимеры. |
Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.
Классификация полимеров
Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.
Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.
Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.
Классификация по структуре
По структуре полимеры делятся на: линейные, разветвленные и пространственные.
Химические связи имеются и между цепями, образуя пространственную структуру
Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).
Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).
Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).
Классификация по происхождению
По способу получения полимеры делятся на: природные, синтетические и искусственные.
Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.).
Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе.
Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука).
Классификация по химическому характеру
По химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры).
Полиэфирные полимеры — содержат группу сложных эфиров -СОО-.
Полиамидные полимеры — содержат пептидную связь -СО-NH2-.
Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).
Классификация по способу получения
Полимеры получают либо реакциями полимеризации, либо поликонденсацией.
Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера. |
Например , образование полиэтилена происходит по механизму полимеризации:
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода). |
Например , образование капрона протекает по механизму поликонденсации:
Свойства полимеров
По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.
Термореактивные полимеры — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.
Например , фенолформальдегидные смолы, полиуретан.
Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.
Например , полиэтилен, полистирол, полихлорвинил и т.д.
Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.
Например , натуральный каучук.
Полимеризация и поликонденсация
Полимеризация
Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n
- В основе полимеризации лежит реакция присоединения.
- Полимеризация – цепная реакция, включает стадии инициирования, роста и обрыва цепи.
- Элементный состав (молекулярные формулы) мономера и полимера одинаков.
Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.
Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.
Например , схема сополимеризации этилена с пропиленом:
Важнейшие синтетические полимеры
Изображение с портала orgchem.ru
Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:
Метиловый эфир метакриловой кислоты
Термопластичный (t = 260-320 0 C)
Мономер: бутадиен-1,3 (дивинил)
Поликонденсация
Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов, обычно это вода. |
- В основе поликонденсации лежит реакция замещения.
- Поликонденсация – процесс ступенчатый, т.к. образование макромолекул происходит в результате последовательного взаимодействия мономеров, димеров или n-меров как между собой, так и друг с другом.
- Помимо высокомолекулярного соединения, в реакции поликонденсации образуется второе, низкомолекулярное вещество (обычно это вода).
Важнейшие синтетические полимеры, получаемые реакцией поликонденсации, и области их применения:
Мономер: Рибоза, ортофосфорная кислота, азотистые основания
Источник