Витамины — это группа низкомолекулярных органических соединений достаточно простого строения и разнообразной химической природы.
По химической природе витамины представляет собой сборную группу органических веществ, которые объединяются по признаку абсолютной необходимости их в качестве составной части пищи.
Витамины содержатся в пищевых продуктах в очень малых количествах и относятся к микронутриентам.
Не относят к витаминам микроэлементы, незаменимые аминокислоты и незаменимые жиры.
Уже более века ученые всего мира стараются решить вопрос сохранения макро- и микроэлементов в переработанных продуктах питания.
Изначально витаминные ингредиенты извлекались из пищевых продуктов, однако уже в конце 30-х годов были разработаны методы синтеза их в лаборатории, что привело к сокращению затрат и созданию условий для более широкого использования витаминов и создания поливитаминных комплексов.
С течением времени в состав поливитаминов включались все новые и новые микроэлементы, были разработаны строгие правила, регламентирующие качество и безопасность таких продуктов. Сегодня у нас есть огромное количество разнообразных поливитаминов: из натуральных ингредиентов и синтетические, из растительного и животного сырья, не содержащие ГМО, сои и глютена и прочие.
Поливитамины теперь разделяются не только по возрастным группам, начиная от младенческого возраста, но также существуют поливитамины для разных этапов жизни (беременность, менопауза и др.), при различных патологических состояниях и заболеваниях.
Формы выпуска поливитаминов также разнообразны: таблетки, капсулы, порошки, жидкости, сиропы и пр.
Несмотря на более чем столетние исследования и инновации население планеты продолжает страдать от несбалансированного рациона и дефицита макро- и микронутриентов.
И хотя в настоящее время дефицит может быть недостаточно серьезным, чтобы проявляться в виде таких тяжелых заболеваний как бери-бери или пеллагра, он все равно влияет на наше здоровье.
К сожалению, большинство людей просто не получают в достаточном количестве питательные вещества, в которых они нуждаются, даже если они считают, что придерживаются здорового питания. Причин этому много: начиная от некачественных продуктов и заканчивая сбоями обмена веществ в организме.
В 2016 году было проведено исследование, в котором участвовало более 10000 человек, продемонстрировавшее, что люди, принимающие поливитамины, имеют значительно меньший дефицит витаминов и минералов, чем люди, придерживающиеся обычного питания, без применения БАД к пище.
Люди, принимающие поливитамины и минеральные добавки не менее 25 дней в месяц
Люди, не принимающие добавки
Источник
Производство витаминов
Витамины принимают активное участие во многих процессах метаболизма человека и высших животных (процессы цикла трикарбоновых кислот, распад и синтез жирных кислот, синтез аминокислот и др.), оказывая влияние на разнообразные физиологические процессы.
Природным источником многих витаминов являются растения и микроорганизмы. В настоящее время в производстве многих витаминов ведущие позиции принадлежат химическому синтезу, однако при производстве отдельных витаминов микробный синтез имеет огромное значение, например при производстве кормовых препаратов витаминов. Отдельные витамины, кобаламины, менахиноны продуцируются только микробными клетками. Микроорганизмы содержат много витаминов, которые чаще всего входят в состав ферментов. Состав и количество витаминов в биомассе зависят от биологических свойств данной культуры микроорганизмов и условий культивирования. Некоторые витамины микроорганизмы синтезируют, другие, напротив, усваивают в готовом виде из окружающей среды. Культура, способная синтезировать какой-либо витамин, называется автотрофной по отношению к нему, если культура не способна синтезировать данный витамин, она является авто-гетеротрофной.
Однако эргостерин, каротин. рибофлавин (В2), витамин В12 и аскорбиновую кислоту (микроорганизмы используются как селективные окислители сорбита в сорбозу при производстве витамина С) получают микробиологическим путем. Для синтеза витаминов В1, В2, В6, В12 и аскорбиновой кислоты также используют кефирные грибки, а бифидобактерии – группы В, РР (никотиновая кислота) и Н, однако пока эти микроорганизмы не используются как продуценты витаминов в промышленных масштабах.
Изменяя условия среды, содержание отдельных витаминов можно увеличить. Так, количество рибофлавина зависит от интенсивности аэрации и содержания железа в среде. Количество витаминов в клетках, а также их выделение из последних можно изменить при помощи микроэлементов. Существует производство рибофлавина на основе использования дрожжеподобных грибов Eremothecium ashbyii и Ashbia gossypii. Рибофлавин продуцируется также видами Clostridium и Ascomycetes. Микроводоросль Dunalieiia viridis культивируется с целью получения β-каротина.
Получение витамина В12
Витамин В12 – (α-5,6-диметилбензимидазол)-цианкобаламин – полимер сложного строения, являющийся гематопоэтическим и ростовым фактором для многих животных и микроорганизмов. Микробиологический синтез является единственным способом получения данного витамина.
Способность к синтезу данного витамина широко распространена среди прокариотических микроорганизмов. Активно продуцируют витамин В12 Propionibacterium, а также Pseudomonas и смешанные культуры метанообразующих бактерий. Получение витамина на основе пропионовокислых бактерий, способных к самостоятельному синтезу аденозилкобаламина 5,6 ДМБ (коэнзима В12), осуществляется в две стадии в двух последовательных аппаратах объемом 500 л при коэффициенте заполнения 0.65–0.70.
Первую стадию культивирования проводят в течение 80 ч и слабом перемешивании в анаэробных условиях до полной утилизации сахара; полученную биомассу центрифугируют. Сгущенную суспензию инкубируют во втором аппарате еще в течение 88 ч, аэрируя культуру воздухом (2 м3/ч). Среда содержит сахара (обычно глюкозу 1–10 %), добавки солей железа, марганца, магния и кобальта (10–100 мг/л), кукурузный экстракт (3–7 %). В качестве источника азота принят (NH4)2SO4. Ферментацию проводят при 30°С, рН стабилизируют на уровне 6.5–7.0 подтитровкой культуры раствором (NH)4OH. На второй стадии происходит образование ДМБ. После завершения ферментации витамин экстрагируют из клеток, нагреванием в течение 10–30 минут при 80–120°С. При последующей обработке горячей клеточной суспензии цианидом происходит образование CN-кобаламина; продукт сорбируют, пропуская раствор через активированный уголь и окислы алюминия; затем элюируют водным спиртом или хлороформом. После выпаривания растворителя получают кристаллический витамин. Выход В12 составляет до 40 мг/л.
Активными продуцентами В12 являются бактерии рода Pseudomonas. Разработаны эффективные технологии на основе термофильных бацилл Bacillus circulans, в течение 18 ч при 65–75°С в нестерильных условиях.
Выход витамина составляет от 2.0 до 6.0 мг/л. Бактерии выращивают на богатых средах, приготовленных на основе соевой и рыбной муки, мясного и кукурузного экстракта. Продукция В12 для медицины составляет около 12 т/г; форма выпуска – стерильный раствор CN-В12 на основе 0.95-го раствора NaCl и таблетки витамина в смеси с фолиевой кислотой или другими витаминами.
Получение витамина В2
Витамин В2 (рибофлавин) получил свое название от сахара рибозы, входящего в состав молекулы витамина в виде многоатомного спирта D-рибита. Широко распространен в природе и в значительных количествах синтезируется растениями, дрожжами, грибами, бактериями. Животные, не синтезирующие этот витамин, должны получать его в составе комбикормов. При дефиците рибофлавина в организме нарушаются процессы белкового обмена, замедляется рост. Препараты рибофлавина используют в медицине для лечения ряда заболеваний, а в животноводстве – в качестве добавки в корма. Микроорганизмы синтезируют рибофлавин и две его коферментные формы – ФАД и ФМН. Продуцентами витамина являются бактерии (Brevibacterium ammoniagenes, Micrococcus glutamaticus), дрожжи (Candida guilliermondii, C. flaveri), микроскопические (Ashbya gossypii, Eremothecium ashbyii) и плесневые грибы (Aspergillus niger).
Промышленное получение рибофлавина осуществляется химическим синтезом, микробиологическим и комбинированным: при этом синтезированная микроорганизмами рибоза химически трансформируется в В2.
Для медицинских целей микробиологический рибофлавин получают на основе гриба Aspergillus. Для высоких выходов витамина (до 7 г/л) используют усовершенствованные штаммы и оптимизированные среды, содержащие (в %): кукурузный экстракт – 2.25, пептон – 3.5, соевое масло –4.5 и стимуляторы (пептоны, глицин). Используют активный инокулят, которым засевают стерильную среду. Ферментацию проводят в течении 7 суток при 28°С и хорошей аэрации (0,3 м3/м3мин.). Исходный рН составляет около 7.0, в ходе ферментации в связи с выделением кислот среда подкисляется до рН 4.0–4.5. После утилизации углеродного субстрата продуцент начинает утилизировать кислоты; рН повышается и после этого начинается образование витамина В2. При этом кристаллы рибофлавина накапливаются в гифах и вне мицелия. На постферметационной стадии для выделения витамина мицелий нагревают в течение 1 ч при 120°С.
В ряде стран для получения кормовых препаратов витамина В2 используют достаточно простой способ на основе микроскопического гриба Eremothecium ashbyii, который выращивают в глубинной культуре в течение 80–84 ч при 28–30°С на среде с глюкозой или мальтозой (2.5 %), источником азота в виде NH4NO3 и карбоксидом кальция (0.5 %). Выход рибофлавина составляет 1250 мкг/мл. Культуральная жидкость концентрируется в вакуумной выпарке до содержания сухих веществ 30–40 % и высушивается в распылительной сушилке. Товарная форма продукта – порошок с содержанием рибофлавина не менее 10 мг/г и 20 % сырого протеина, в препарате присутствуют никотиновая кислота и витамины В1, В3, В6 и В12. Полученный генноинженерным методом штамм Bacillus subtilis образует за 35 суток ферментации до 4 г/л рибофлавина.
Источник