3. Сила тяжести
Силу гравитации, с которой Земля притягивает тело, находящееся на её поверхности или вблизи неё, называют силой тяжести . Эта сила направлена к центру Земли.
Из-за того что есть сила тяжести, возможно существование атмосферы (молекулы газа не улетают в космос), воды морей и океанов удерживаются на своих местах, если какой-либо предмет приподнимают и роняют, этот предмет падает вниз — в направлении Земли.
Силу, с которой Земля притягивает тела, можно рассчитать по формуле: F = m ⋅ g , где \(m\) — масса тела, а \(g\) — ускорение свободного падения.
Ускорение свободного падения — это ускорение, которое вблизи Земли приобретает тело, падающее свободно и беспрепятственно. Вблизи поверхности Земли значение \(g\) равно примерно \(9,81\) м с 2 , для приблизительных расчётов можно использовать значение \(10\) м с 2 .
Если предмет падает, например, в течение \(4\) секунд, то скорость его падения в самом начале равна \(0\) м / с ;
за \(2\)-ю секунду он достигает скорости: \(9,81\), умноженное на \(2\), т.е. модуль скорости \(v\) \(=\) \(19,62\) м / с ;
за \(3\)-ю секунду он достигает скорости: \(9,81\), умноженное на \(3\), т.е. модуль скорости \(v\) \(=\) \(29,43\) м / с ;
за \(4\)-ю секунду тело достигает скорости: \(9,81\), умноженное на \(4\), т.е. модуль скорости \(v\) \(=\) \(39,24\) м / с , что приблизительно составляет \(141\) км/ч.
Интересно, что кирпич и яблоко падают с одинаковой скоростью. Только падение лёгких предметов сопротивление воздуха замедляет сильнее, например, птичье перо из-за сопротивления воздуха будет падать медленнее.
На Юпитере значение \(g\) приблизительно равно \(26,2\) м с 2 , это примерно так же, как если бы человек в дополнение к своим \(60\) кг веса взвалил бы на плечи ещё примерно \(102\) кг.
Источник
Закон всемирного тяготения. Сила тяжести. Невесомость
Между любыми телами в природе существует сила взаимного притяжения, называемая силой всемирного тяготения (или силами гравитации). Закон всемирного тяготения был открыт Исааком Ньютоном в 1682 году. Когда еще ему было 23 года он высказал предположение, что силы, удерживающие Луну на ее орбите, той же природы, что и силы, заставляющие яблоко падать на Землю.
Закон всемирного тяготения: Все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.
где F — сила всемирного тяготения, m1 , m2 – массы тел, R – расстояние между телами. Коэффициент пропорциональности G одинаков для всех тел в природе. Его называют гравитационной постоянной
Физический смысл гравитационной постоянной: гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.
G = 6,67· 10 -11 Н м 2 /кг 2 . Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798г.
Для тел, находящихся вблизи поверхности планет (в частности Земли) частным случаем проявления силы тяготения является сила тяжести: где g — ускорение свободного падения, g = 9,8 м/с 2
Сила тяжести – это сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.
Сила тяжести (mg) направлена вертикально строго к центру Земли; в зависимости от расстояния до поверхности земного шара ускорение свободного падения различно. У поверхности Земли в средних широтах значение его составляет около 9,8 м/с 2 . по мере удаления от поверхности Земли g уменьшается.
Вес тела (сила веса) – это сила, с которой тело действует на горизонтальную опору или растягивает подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе. Обозначается буквой Р.
Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.
Если ускорение а = 0, то вес равен силе, с которой тело притягивается к Земле, а именно . [P] = Н.
Если другое состояние, то вес меняется:
- если ускорение а не равно 0 , то вес Р = mg — ma(вниз) илиР = mg + ma(вверх);
- если тело падает свободно или движется с ускорением свободного падения, т.е. а =g (рис.2), то вес тела равен 0 (Р=0). Состояние тела, в котором его вес равен нулю, называетсяневесомостью.
В невесомости находятся и космонавты. В невесомости на мгновение оказываетесь и вы, когда подпрыгиваете во время игры в баскетбол или танца.
Домашний эксперимент: Пластиковая бутылка с отверстием у дна наполняется водой. Выпускаем из рук с некоторой высоты. Пока бутылка падает, вода из отверстия не вытекает.
Источник
Природа сил
Все известные взаимодействия и соответственно силы в природе сводятся к следующим четырем типам: гравитационное, электромагнитное, сильное, слабое.
Гравитационное взаимодействие свойственное всем телам во Вселенной, проявляется в виде взаимного притяжения всех тел в природе, независимо от среды в которой они находятся, в микромире элементарных частиц при обычных энергиях роли не играет. Ярким примером является притяжение Землей. Это взаимодействие подчиняется закону всемирного тяготения: сила взаимодействия между двумя материальными точками массами m1 и m2 прямо пропорциональная произведению этих масс и обратно пропорциональная квадрату расстояния между ними. Математически этот закон имеет вид:
(3.7)
где G = 6,67 10 -11 Н м 2 /кг 2 — гравитационная постоянная, которая определяет силу притяжения между двумя одинаковыми телами с массами m1 = m2 = 1 кг на расстоянии r = 1 м.
Электромагнитное взаимодействие – взаимодействие между неподвижными и подвижными электрическими зарядами. Этим взаимодействием в частности обусловлены силы межмолекулярного и межатомного взаимодействия.
Взаимодействие между двумя точечными неподвижными зарядами q1 и q2 подчиняется закону Кулона:
,
где k = 9 10 9 Н м 2 /Кл 2 – коэффициент пропорциональности.
Если заряд движется в магнитном поле, то на него действует сила Лоренца:
v – скорость заряда, В – вектор магнитной индукции.
Cильное взаимодействие обеспечивает связь нуклонов в ядре атома. Слабое отвечает за большинство распадов элементарных частиц, а также за процессы взаимодействия нейтрино с веществом.
В классической механике мы имеем дело с гравитационными и электромагнитными силами, которые приводят к появлению сил притяжения, сил упругости, сил трения и других.
Сила тяжести характеризует взаимодействие тела с Землей.
Вблизи Земли все тела падают приблизительно с одинаковым ускорением g 9,8 м/с 2 , которое называется ускорением свободного падения. Отсюда следует, что вблизи Земли на каждое тело действует сила тяжести, которая направлена к центру Земли и равна произведению массы тела на ускорение свободного падения.
вблизи поверхности Земле поле однородно (g=const). Сравнивая с, получим, что.
Сила реакции опоры – сила , с которой опора действует на тело. Она приложена к телу и перпендикулярна поверхности соприкосновения. Если тело лежит на горизонтальной поверхности, то сила реакции опоры численно равна силе тяжести. Рассмотрим 2 случая.
Пусть тело покоится, тогда на него действует две силы. Согласно 2 закону Ньютона
Найдем проекции этих сил на ось у и получим, что
2. Пусть теперь тело находится на наклонной плоскости, составляющей угол с горизонтом (см. рис.).
Рассмотрим случай, когда тело будет покоиться, тогда на тело будут действовать две силы, уравнение движения выглядит аналогично первому случаю. Записав 2 закон Ньютона в проекции на ось у, получим, что сила реакции опоры численно равна проекции силы тяжести на перпендикуляр к этой поверхности
Вес тела – сила, с которой действует тело на опору или подвес. Вес тела равен по модулю силе реакции опоры и направлен противоположно
Часто путают силу тяжести и вес. Это обусловлено тем, что в случае неподвижной опоры эти силы совпадают по величине и по направлению Однако надо помнить, что эти силы приложены к разным телам: сила тяжести приложена к самому телу, вес приложен к подвесу или опоре. Кроме того, сила тяжести всегда равна mg, независимо от того покоится тело или движется, сила веса зависит от ускорения, с которым движутся опора и тело, причем она может быть как больше, так и меньше mg, в частности, в состоянии невесомости она обращается в нуль.
Сила упругости. Под действием внешних сил может происходить изменение формы тела – деформация. Если после прекращения действия силы форма тела возобновляется, деформация называется упругой. Для упругой деформации справедлив закон Гука:
x — удлинение тела вдоль оси х, k — коэффициент пропорциональности, который называют коэффициентом упругости.
При непосредственном соприкосновении тел помимо сил упругости могут возникать силы и другого типа, так называемые силы трения.
Силы трения бывают двух видов:
- Сила трения покоя.
- Сила трения, обусловленная движением тел.
Сила трения покоя – сила, с которой действует поверхность на покоящееся на ней тело в направлении, противоположном приложенной к телу силе (см. рис) и равная ей по модулю Силы трения 2 типа появляются при перемещении соприкасающихся тел или частей друг относительно друга. Трение, возникающее при относительном перемещении двух соприкасающихся тел, называют внешним. Трение между частями одного и того же сплошного тела (жидкость или газ), носит название внутреннего.Сила трения скольжения действует на тело в процессе его перемещения по поверхности другого тела и равна произведению коэффициента трения между этими телами на силу реакции опоры N и направлена в сторону, противоположную относительной скорости движения этого тела F = N Силы трения играют очень большую роль в природе. В нашей повседневной жизни трение нередко оказывается полезным. Например, затруднения которые испытывают пешеходы и транспорт во время гололедицы, когда трение между покрытием дороги и подошвами пешеходов или колесами транспорта значительно уменьшается. Не будь сил трения, мебель пришлось бы прикреплять к полу, как на судне во время качки, ибо она при малейшей негоризонтальности пола сползла бы в направлении покатости. Закон сохранения импульса Замкнутой (изолированной) системой тел называют такую систему, тела которой не взаимодействуют с внешними телами или если равнодействующая внешних сил равна нулю. Если на систему материальных точек не действуют внешние силы, то есть система изолирована (замкнутая), из (3.12) выплывает, что , или (3.13) Мы получили фундаментальный закон классической физики — закон сохранения импульса: в изолированной (замкнутой) системе суммарный импульс остается величиной постоянной. Для того, чтобы выполнялся закон сохранения импульса достаточно, чтобы система была замкнута. Закон сохранения импульса является фундаментальным законом природы не знающим исключений. В нерелятивистском случае можно ввести понятие центра масс (центра инерции) системы материальных точек, под которым понимают воображаемую точку, радиус-вектор которой , выражается через радиусы векторы материальных точек по формуле: (3.14) Найдем скорость центра масс в данной системе отсчета, взяв производную по времени от соотношения (3.14) . (3.14) Импульс системы равняется произведению массы системы на скорость ее центра инерции. . (3.15) Понятие центра масс позволяет придать уравнению другую форму, которая часто оказывается более удобной. Для этого достаточно учесть, что масса системы есть величина постоянная. Тогда (3.16) где – сумма всех внешних сил, которые действуют на систему. Уравнение (3.16) – уравнение движенияцентра инерции системы. Теорема о движении центра масс гласит: центр масс движется как материальная точка, масса которой равна суммарной массе всей системы, а действующая сила – геометрической сумме всех внешних сил, действующих на систему. Если система замкнута, то . В этом случае уравнение (3.16) переходит в, из которого следуетV=const. Центр масс замкнутой системы движется прямолинейно и равномерно.
Источник