Статистика объектов нечисловой природы

Статистика объектов нечисловой природы

СТАТИСТИКА ОБЪЕКТОВ НЕЧИСЛОВОЙ ПРИРОДЫ — раздел математической статистики, в котором статистическими данными являются объекты нечисловой природы, т.е. элементы множеств, не являющихся линейными пространствами. Объекты нечисловой природы нельзя складывать и умножать на число. Примерами являются результаты измерений в шкалах наименований, порядка, интервалов; ранжировки, разбиения, толерантности и другие бинарные отношения; результаты парных и множественных сравнений; люсианы, т. е. конечные последовательности из 0 и 1; множества; нечеткие множества. Необходимость применения объектов нечисловой природы возникает во многих областях научной и практической деятельности, в том числе и в социологии. Примерами являются ответы на «закрытые» вопросы в социологических анкетах, в которых респондент должен выбрать одну или несколько из фиксированного числа подсказок, или измерение мнений о привлекательности (профессий, товаров, политиков и др.), проводимое по порядковой шкале. Наряду со специальными теориями для каждого отдельного вида объектов нечисловой природы в Статистика объектов нечисловой природы имеется и теория обработки данных, лежащих в пространстве общей природы, результаты которой применимы во всех специальных теориях.

В статистике объектов нечисловой природы классические задачи математической статистики — описание данных, оценивание, проверку гипотез — рассматривают для данных неклассического типа, что приводит к своеобразию постановок задач и методов их решения. Например, из-за отсутствия линейной структуры в пространстве, в котором лежат статистические данные, в статистике объектов нечисловой природы математическое ожидание определенное не через сумму или интеграл, как в классическом случае, а как решение задачи минимизации некоторой функции. Эта функция представляет собой математическое ожидание (в классическом смысле) показателя различия между значением случайного объекта нечисловой природы и фиксированным элементом пространства. Эмпирическое среднее определяется как результат минимизации суммы расстояний от нечисловых результатов наблюдений до фиксированного элемента пространства. Справедлив закон больших чисел: эмпирическое среднее сходится при увеличении объема выборки к математическому ожиданию, если результаты наблюдений являются независимыми одинаково распределенными случайными объектами нечисловой природы и выполнены некоторые математические «условия регулярности».

Читайте также:  Администрация отдел охраны природы

Аналогичным образом определяется условное математическое ожидание и регрессионную зависимость. Из доказанной в статистике объектов нечисловой природы сходимости решений экстремальных статистических задач к решениям соответствующих предельных задач вытекает состоятельность оценок в параметрических задачах оценивания параметров и аппроксимации, а также ряд результатов в многомерном статистическом анализе. Большую роль в статистика объектов нечисловой природы играют непараметрические методы, в частности, методы непараметрической оценки плотности и регрессионной зависимости в пространствах общей природы, в том числе и в дискретных пространствах.

Для решения многих задач статистики объектов нечисловой природы: нахождения эмпирического среднего, оценки регрессионной зависимости, классификации наблюдений и др. — используют показатели различия (меры близости, расстояния, метрики) между элементами рассматриваемых пространств, вводимые аксиоматически. Принятое в теории измерений как часть статистики объектов нечисловой природы условие адекватности (инвариантности) алгоритмов анализа данных позволяет указать вид средних величин, расстояний, показателей связи и т. д., соответственно измерениям в тех или иных шкалах. Методы построения, анализа и использования классификаций и многомерного шкалирования дают возможность сжать информацию и дать ей наглядное представление.

К статистике объектов нечисловой природы относятся методы ранговой корреляции, стат. анализа бинарных отношений (ранжировок, разбиений, толерантностей), параметрические и непараметрические методы обработки результатов парных и множественных сравнений. Теория люсианов (последовательностей независимых испытаний Бернулли) развита в асимптотике растущей размерности.

Социологический словарь / отв. ред. Г.В. Осипов, Л.Н. Москвичев. М, 2014, с. 500-501.

Орлов А.И. Устойчивость в социально-экономических моделях. М., 1979; Анализ нечисловой информации в социол. иссл-ях. М., 1985; Вероятность и матем. статистика: Энциклопедия. М., 1999; Орлов А.И. Прикладная статистика. М., 2007.

Источник

Статистика объектов нечисловой природы

Перейдем к статистике объектов нечисловой природы (она же — статистика нечисловых данных, или нечисловая статистика). Сначала напомним, что исходный объект в прикладной статистике — это выборка, т.е. совокупность независимых одинаково распределенных случайных элементов. Какова природа этих элементов? В классической математической статистике элементы выборки — это числа. В многомерном статистическом анализе — вектора. А в нечисловой статистике элементы выборки — это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы лежат в пространствах, не имеющих векторной структуры.

Читайте также:  Правовая природа ничтожной сделки

Примерами объектов нечисловой природы являются:

— значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);

— упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);

— классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);

— толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;

— результаты парных сравнений или контроля качества продукции по альтернативному признаку («годен» — «брак»), т.е. последовательности из 0 и 1;

— множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;

— вектора, координаты которых — совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности организации (т.н. форма № 1-наука) или анкета эксперта, в которой ответы на часть вопросов носят качественный характер, а на часть — количественный;

— ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.

Интервальные данные тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств. А именно, если характеристическая функция нечеткого множества равна 1 на некотором интервале и равна 0 вне этого интервала, то задание нечеткого множества эквивалентно заданию интервала. Напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств. Цикл соответствующих теорем приведен в работе [4].

Читайте также:  Отличие природных антибиотиков от синтетических

С 1970-х годов в основном на основе запросов теории экспертных оценок (а также технических исследований, экономики, социологии и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены основные связи между конкретными видами таких объектов, разработаны для них базовые вероятностные модели.

Следующий этап (1980-е годы) — выделение статистики объектов нечисловой природы в качестве самостоятельной дисциплины в рамках математических методов исследования, ядром которого являются методы статистического анализа данных произвольной природы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики.

К 1990-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. И в 1990-е годы наступило время перейти от математико-статистических исследований к применению полученных результатов на практике. К этому периоду относится публикация большой серии статей в рамках секции «Математические методы исследования», посвященных теории и практике нечисловой статистики.

Следует отметить, что в статистике объектов нечисловой природы одна и та же математическая схема может с успехом применяться во многих областях, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.

Источник

Оцените статью