Статистику объектов нечисловой природы

Статистика объектов нечисловой природы

Перейдем к статистике объектов нечисловой природы (она же — статистика нечисловых данных, или нечисловая статистика). Сначала напомним, что исходный объект в прикладной статистике — это выборка, т.е. совокупность независимых одинаково распределенных случайных элементов. Какова природа этих элементов? В классической математической статистике элементы выборки — это числа. В многомерном статистическом анализе — вектора. А в нечисловой статистике элементы выборки — это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы лежат в пространствах, не имеющих векторной структуры.

Примерами объектов нечисловой природы являются:

— значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);

— упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);

— классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);

— толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;

— результаты парных сравнений или контроля качества продукции по альтернативному признаку («годен» — «брак»), т.е. последовательности из 0 и 1;

— множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;

— вектора, координаты которых — совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности организации (т.н. форма № 1-наука) или анкета эксперта, в которой ответы на часть вопросов носят качественный характер, а на часть — количественный;

— ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.

Читайте также:  Природная зона полуострова корея

Интервальные данные тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств. А именно, если характеристическая функция нечеткого множества равна 1 на некотором интервале и равна 0 вне этого интервала, то задание нечеткого множества эквивалентно заданию интервала. Напомним, что теория нечетких множеств в определенном смысле сводится к теории случайных множеств. Цикл соответствующих теорем приведен в работе [4].

С 1970-х годов в основном на основе запросов теории экспертных оценок (а также технических исследований, экономики, социологии и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены основные связи между конкретными видами таких объектов, разработаны для них базовые вероятностные модели.

Следующий этап (1980-е годы) — выделение статистики объектов нечисловой природы в качестве самостоятельной дисциплины в рамках математических методов исследования, ядром которого являются методы статистического анализа данных произвольной природы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики.

К 1990-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. И в 1990-е годы наступило время перейти от математико-статистических исследований к применению полученных результатов на практике. К этому периоду относится публикация большой серии статей в рамках секции «Математические методы исследования», посвященных теории и практике нечисловой статистики.

Следует отметить, что в статистике объектов нечисловой природы одна и та же математическая схема может с успехом применяться во многих областях, а потому ее лучше всего формулировать и изучать в наиболее общем виде, для объектов произвольной природы.

Источник

Статистика объектов нечисловой природы (Обзор) а.И.Орлов

Термин «статистика объектов нечисловой природы» впервые появился в 1979 г. в монографии [1]. В том же году в статье [2] была сформулирована программа развития этого нового направления прикладной математической статистики, которая к 1985 г. в основном была реализована (см. обзоры 4).

Читайте также:  Получить свою долю от использования природных ресурсов

Статистика объектов нечисловой природы как самостоятельное научное направление была выделена в СССР. В 80-е годы существенно возрос интерес к этой тематике и у зарубежных исследователей. Это отражено в отчетах 6 о Первом Всемирном Конгрессе Общества математической статистики и теории вероятностей им. Бернулли, состоявшемся в сентябре 1986 г. в Ташкенте. Статистика объектов нечисловой природы используется в нормативно-технической и методической документации (ГОСТ 24660-81 и другие стандарты по статистическому приемочному контролю по альтернативному признаку, рекомендации [8] и др.). Ее применение позволяет получить существенный технико-экономический эффект (см. например, сводку [9]).

Однако тематика статистики объектов нечисловой природы обсуждалась до сих пор в основном в кругу развивающих ее специалистов, в результате она недостаточно отражена в монографической литературе. Цель настоящей статьи — дать введение в статистику объектов нечисловой природы, выделить ее структуру, указать основные идеи, результаты и публикации.

Объекты нечисловой природы

Так называют элементы пространств, не являющихся линейными. Примерами являются бинарные отношения (ранжировки, разбиения, толерантности [10]), множества, последовательности символов (тексты). Объекты нечисловой природы нельзя складывать и умножать на числа, не теряя при этом содержательного смысла. Этим они отличаются от издавна используемых в прикладной статистики (в качестве элементов выборок) чисел, векторов и функций.

Прикладную статистику по виду статистических данных принято делить [4,8] на следующие направления:

статистика случайных величин (одномерная статистика);

многомерный статистический анализ;

статистика временных рядов и случайных процессов; статистика объектов нечисловой природы.

При создании теории вероятностей и математической статистики исторически первыми были рассмотрены объекты нечисловой природы — белые и черные шары в урне. На основе соответствующих вероятностных моделей были введены биномиальное, гипергеометрическое и другие распределения, получены теоремы Муавра-Лапласа, Пуассона и др. Современное развитие этой тематики привело, в частности, к созданию теории статистического контроля качества продукции по альтернативному признаку (годен — не годен) в работах А.Н.Колмогорова [11], Б.В.Гнеденко [12], Ю.К.Беляева [13], Я.П.Лумельского [14] и многих других.

Читайте также:  Природные феномены какие есть

В семидесятых годах в связи с запросами практики весьма усилился интерес к статистическому анализу нечисловых данных. Московская группа, организованная Ю.Н.Тюриным и другими специалистами вокруг семинара «Математические методы в экспертных оценках», развивала в основном вероятностную статистику нечисловых данных [15]. Были установлены разнообразные связи между различными видами объектов нечисловой природы и изучены свойства этих объектов. Московской группой выпущены, в частности, сборники [16 — 22] и обзоры [23,24]. Хотя в названиях многих из этих изданий стоят слова «экспертные оценки», анализ содержания сборников показывает, что подавляющая часть статей посвящена математико-статистическим вопросам, а не проблемам проведения экспертиз. Частое употребление указанных слов отражает лишь один из импульсов, стимулирующих развитие статистики объектов нечисловой природы и идущих от запросов практики. При этом необходимо подчеркнуть, что полученные результаты могут и должны активно использоваться в теории и практике экспертных оценок, в особенности при разработке АРМ «МАТЭК».

Новосибирская группа (Б.Г.Миркин 28, Г.С.Лобов [29] и др.), как правило, не использовала вероятностные модели, т.е. вела исследования в рамках анализа данных (в том смысле, как этот термин разъясняется в работах [4,8]). В московской группе в рамках анализа данных также велись работы, в частности, Б.Г.Литваком [30]. Исследования по статистике объектов нечисловой природы выполнялись также в Ленинграде, Ереване, Киеве, Таллинне, Тарту, Красноярске, Минске, Днепропетровске, Владивостоке, Калинине и других центрах, некоторые из них будут упомянуты ниже (см. также материалы конференций по анализу нечисловых данных [31,32]).

Источник

Оцените статью