Степень диссоциации электролита зависит от его природы
Электролитическая диссоциация в той или иной степени – процесс обратимый. Но при растворении некоторых соединений равновесие диссоциации в значительной степени смещено в сторону диссоциируемой формы. В растворах таких электролитов диссоциация протекает практически необратимо. Поэтому при написании уравнений диссоциации таких веществ пишется или знак равенства или прямая стрелка, обозначающая, что реакция происходит практически необратимо.
I. Степень электролитической диссоциации
Посмотрите видео-презентацию: “Степень электролитической диссоциации”
Поскольку электролитическая диссоциация — процесс обратимый, то в растворах электролитов наряду с их ионами присутствуют и молекулы. Другими словами, различные электролиты, согласно теории С. Аррениуса, диссоциируют на ионы в различной степени. Полнота распада (сила электролита) характеризуется количественной величиной – степенью диссоциации.
Степень диссоциации (α – греческая буква альфа) — это отношение числа молекул, распавшихся на ионы (n), к общему числу растворенных молекул (N):
Степень диссоциации электролита определяется опытным путем и выражается в долях единицы или в процентах. Если α = 0, то диссоциация отсутствует, а если α = 1 или 100%, то электролит полностью распадается на ионы. Если же α = 20%, то это означает, что из 100 молекул данного электролита 20 распалось на ионы.
Степень диссоциации зависит от природы электролита и растворителя, от концентрации электролита, температуры.
1. Зависимость степени диссоциации от природы: чем полярнее химическая связь в молекуле электролита и растворителя, тем сильнее выражен процесс диссоциации электролита на ионы и тем выше значение степени диссоциации.
2. Зависимость степени диссоциации от концентрации электролита: с уменьшением концентрации электролита, т.е. при разбавлении его водой, степень диссоциации всегда увеличивается.
3. Зависимость степени диссоциации от температуры: степень диссоциации возрастает при повышении температуры (повышение температуры приводит к увеличению кинетической энергии растворённых частиц, что способствует распаду молекул на ионы).
II. Сильные и слабые электролиты
В зависимости от степени диссоциации различают электролиты сильные и слабые. Электролиты со степенью диссоциации больше 30% обычно называют сильными, со степенью диссоциации от 3 до 30% — средними, менее 3% — слабыми электролитами.
Классификация электролитов в зависимости от степени электролитической диссоциации (памятка)
Классификация электролитов
Сильные электролиты
Средние электролиты
Слабые электролиты
Значение степени диссоциации (α)
3. Сильные основания – щёлочи
1. Почти все органические кислоты CH3COOH, C2H5COOH и др.
2. Некоторые неорганические кислоты H2CO3, H2S и др.
3. Почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH)
III. Тренажёр
Источник
23.Растворы электролитов. Теория электролитической диссоциации Аррениуса: степень диссоциации, константа диссоциации. Факторы, влияющие на них. Закон разбавления Оствальда.
По способности веществ распадаться или не распадаться в расплаве или растворе на катионы и анионы различают электролиты и неэлектролиты.
Электролиты – вещества, которые подвергаются электролитической диссоциации, и вследствие чего их расплавы или растворы проводят электрический ток.
К электролитам принадлежат все соли, а также кислотные, основные и амфотерные гидроксиды.
Раствор электролита представляет собой смесь молекул растворителя и сольватированных (ионы растворенного вещества, окруженные соответственно ориентированными диполями растворителя) молекул и ионов растворенного вещества. Относительное количество молекул, распавшихся на ионы, характеризующее степень диссоциации электролита α , зависит от природы растворителя, природы и концентрации электролита, температуры, давления и наличия других электролитов в растворе.
Процесс распада полярного вещества в растворе на ионы называют электролитической диссоциацией (ионного – ионизацией). По способности к электролитической диссоциации электролиты обычно подразделяют на сильные и слабые. К сильным электролитам обычно относят вещества, которые в растворе практически полностью диссоциированы на ионы. Слабыми электролитами считают вещества, степень диссоциации, которых невелика. Понятие степень диссоциации электролита α как величины, равной отношению числа распавшихся (диссоциированных) молекул Nдисс к общему числу молекул N0 электролита, α = Nдисс ⁄ Nо было введено Аррениусом – создателем первой количественной теории растворов электролитов. Теория электролитической диссоциации и основанная на ней классификация кислот и оснований в полной мере применимы лишь к водным растворам.
Процесс электролитической диссоциации возникающий в результате сольватации, обратим, т.е. наряду с равпадом молекул растворенного вещества происходит их образование из ионов:
Кm Аn mК Z1+ + nА Z2- где Кm Аn – молекула электролита; К Z1+ — катион; А Z2- — анион; Z1 и Z2 — заряд аниона и катиона соответственно; n и m – стехиометрические коэффициенты. Равновесие между ионами и молекулами электролита подчиняется закону действия масс. Поэтому важной характеристикой процесса диссоциации является константа диссоциации (константа ионизации) Кd (С) , вычисленная по равновесным концентрациям молекул и ионов: Кd (С) = [К Z1+ ] m [А Z2- ] n ⁄[К mАn] , где [К Z1+ ], [А Z2- ] –равновесные молярные концентрации катионов и анионов соответственно; [К mАn] — равновесная молярная концентрация недиссоциированных молекул электролита.
Константу равновесия процесса диссоциации принято обозначать Ка в случае слабых кислот и Кb для слабых оснований.
Пример диссоциации слабого основания (гидроксид аммония) NН4ОН NН4 + + ОН —
Многоосновные кислоты и многоосновные основания диссоциируют ступенчато.
Константа диссоциации характеризует процесс диссоциации данного электролита в данном растворителе, но не зависит от концентрации электролита и при постоянной температуре Кd (С) =соnst. Очевидно, что степень диссоциации α тем больше, чем ниже концентрация, т.е. чем сильнее разбавлен раствор.
В состоянии равновесия концентрации катионов К Z+ и анионов А Z- будут равны [К Z+ ] = [А Z- ] = α С, а концентрация недиссоциированных молекул [КА] = (С – αС) = С ( 1- α) подставляя эти выражения в уравнение для константы диссоциации получим:
Кd (С) = α 2 × С
1- α — это выражение описывает закон разбавления (разведения) Оствальда для слабых электролитов. В случае когда степень диссоциации электролита α ⁄Кd (С) ≥100, величиной α по сравнению с 1 можно пренебречь и закон разбавления Оствальда записать в упрощенном варианте Кd (С) ≈ α 2 С.
Из закона разбавления Оствальда следует, что степень диссоциации уменьшается с увеличением концентрации слабого электролита.
24. Закон Рауля для растворов электролитов. Коэффициент диссоциации (i) и его связь со степенью диссоциации. Элементы современной теории сильных электролитов (теория Дебая-Хюккеля). Ионная сила, активность и коэффициент активности.
Понижение давления пара растворителя над раствором определяется в основном количеством растворенных частиц. Однако количество растворенных частиц в растворах электролитов, в отличие от растворов неэлектролитов, определяется не только концентрацией раствора, но и степенью диссоциации электролита, поскольку все молекулы или часть молекул электролита в растворе распадаются на ионы. Применяя закон Рауля к растворам электролитов Вант-Гофф ввел поправочный коэффициент i в уравнение для осмотического давления Р = С R Т.
Коэффициент i , учитывает увеличение числа частиц в растворе в результате электролитической диссоциации: ∆ р ⁄р 0 i = i Х2 (Р = i С R Т).
Коэффициент диссоциации i показывает, во сколько раз число частиц в растворе электролита больше числа частиц в растворе неэлектролита той же концентрации, (для растворов неэлектролитов i=1, а для растворов электролитов i> 1). При диссоциации уксусной кислоты количество образовавшихся ионов n=2.
Число ионов в 1л раствора Nион = nСNА ,
А число недиссоциированных молекул растворенного вещества Nнедисс = (1-)СNА ,
Где = Nдис ⁄N0 — степень диссоциации электролита (N0 = Nдисс + Nнедисс), с – молярная концентрация раствора (моль⁄ л).
Таким образом, коэффициент диссоциации i связан со степенью диссоциации электролита соотношением: = (i — 1) ⁄ (n-1).и, значит по относительному изменению давления пара растворителя над раствором известной концентрации можно определить степень диссоциации электролита.
Растворы сильных электролитов обнаруживают особенности в поведении, не соответствующие их полной диссоциации на ионы. Так, реальная концентрация ионов оказывается значительно меньше концентрации, задаваемой при приготовлении раствора. Кажущаяся (определяемая экспериментально) степень диссоциации сильных электролитов в соответствии с опытными данными меньше 1 даже в разбавленных растворах. Это связано с тем, что в растворах электролитов наблюдается некоторая степень упорядоченности взаимного расположения ионов, вызванная электростатическим взаимодействием катионов и анионов. На небольших расстояниях от каждого иона преимущественно располагаются ионы противоположного знака, т.е. вокруг каждого иона в растворе создается ионная атмосфера.
Таким образом, для процессов диссоциации и химических реакций, протекающих в растворах с участием сильных электролитов, а также в концентрированных растворах слабых электролитов, нельзя рассчитывать константы равновесия на основании концентраций свободных ионов, которых нет в реальных системах. Кроме того, различная степень сольватации веществ, участвующих в реакции, по-разному изменяет скорости прямой и обратной реакций, что также приводит к зависимости константы равновесия от общего содержания ионов в растворе. Поэтому для описания свойств реальных растворов, как и других реальных систем используют метод активностей Льюиса, в котором для учета межионных и межмолекулярных взаимодействий введено понятие эффективной концентрации или активности. Подстановка активности вместо концентрации в термодинамические соотношения, справедливые для идеальных растворов, позволяет применять их для описания любых систем. Активность электролита суммарно отражает все эффекты взаимодействия ионов между собой и с молекулами растворителя: = Сm, где Сm – моляльная концентрация электролита; — коэффициент активности, который можно рассматривать как меру различия поведения электролита в данном растворе и в растворе, который принимают за идеальный. Для идеальных растворов g = 1. Бесконечно разбавленные растворы по своим сойствам приближаются к идеальным, поэтому в таких растворах полагают g1.
Коэффициенты активности и, следовательно, сами активности определяют экспериментально, измеряя различные свойства раствора, например, давление пара растворителя, температуру кипения или кристаллизации раствора и др.
Электростатическая теория сильных электролитов, развитая в трудах Дебая, Хюккеля, позволяет вычислить средний коэффициент активности g -сильного бинарного электролита в разбавленных растворах. Сила электростатического взаимодействия ионов с их окружением (ионной атмосферой) определяется плотностью заряда в этом окружении, а плотность заряда, в свою очередь, зависит от того, сколько ионов находится в единице объема раствора, т.е. от их концентрации, и от того, какой заряд несут эти ионы. Мерой этого взаимодействия является ионная сила раствора I, рассчитываемая по формуле: I = 0,5 Сm,ii 2
Источник