Таблица виды излучений природа излучения

Физические свойства различных видов ионизирующих излучений

Из таблицы 1 видно, что рентгеновское излучение и тормозное излучение высокой энергии обладает сходными с гамма-излучением природой и физическими свойствами.

Таблица 1 – Свойства квантовых излучений

Плотность ионизации в тканях

Тормозное излучение высоких энергий

К корпускулярному излучению относятся альфа-частицы, бета-частицы, нейтроны, протоны, пи-мезоны и тяжелые ионы. Они представляют собой поток быстролетящих заряженных или нейтральных (нейтроны) частиц – корпускул.

Альфа-излучение (-частицы) – это поток частиц с массой, равной четырем, и двойным положительным зарядом, т.е. поток ядер атомов гелия. Альфа-частица состоит из двух нейтронов и двух протонов. Альфа-излучение естественных радиоактивных изотопов (энергия до 9 МэВ) обладает очень малой проникающей способностью, составляющей в тканях человека 50-70 мк. Оно применяется только в виде общих или местных радоновых ванн ( 222 Rn) в физиотерапевтической практике. Альфа-частицы супервольтной энергии (800 МэВ), полученные на циклических ускорителях, обладают высокой проникающей способностью.

Бета-излучение (-частицы) – это частицы, имеющие отрицательный или положительный заряд и массу, равную 1/1840 массы атома водорода. Их энергия варьирует в значительных пределах: от минимальной, практически нулевой, до максимальной – в несколько миллионов электрон-вольт. Источниками бета-излучения являются естественные и искусственные радиоактивные вещества ( 32 Р, 90 Y, 131 I), а также линейные и цикличные ускорители. Характеристика альфа- и бета-излучения радиоактивных веществ приведена в таблице 2.

Таблица 2 – Свойства альфа- и бета-излучений радиоактивных веществ

Плотность ионизации в тканях

Альфа-излучение: ядра гелия

Как следует из таблицы 2, проникающая способность бета-частиц значительно превосходит таковую альфа-частиц, тогда как ионизационная способность альфа-излучения намного выше, чем бета-излучения.

Таким образом, сопоставляя физические свойства альфа- и бета-частиц, источником которых являются радиоактивные вещества, с таковыми ортовольтного рентгеновского и гамма-излучения необходимо подчеркнуть, что наибольшей проникающей способностью обладают гамма-лучи. Что касается плотности ионизации, то на единицу пробега в тканях альфа-частицы оказывают действие в сотни раз более сильное, чем бета-частицы, и в тысячу раз сильнее, чем рентгеновское и гамма-излучение.

Нейтронное излучение – поток нейтронов, представляющих собой элементарные частицы, не имеющие электронного заряда, с массой, равной 1,00897 атомной единицы массы. В клинической практике находят применение быстрые нейтроны с энергией от 20 кэВ до 20 МэВ. Основными источниками нейтронов, используемых с лечебной целью, являются ускорители и ядерные реакторы (для дистанционного облучения), а также радиоактивный калифорний ( 252 Сf) для контактного облучения.

Читайте также:  Природа нашей страны казахстан

Протонное излучение – поток элементарных частиц с массой, равной 1,00758 атомной единицы массы, и положительным зарядом. Протоны – это ядра атомов водорода, образующиеся при ионизации атомов водорода. Источником протонов для медицинских целей служат ускорители. Преимуществом протонов и получаемых на ускорителях альфа-частиц перед перечисленными ранее видами излучений является их способность образовывать в конце своего пробега в тканях максимум ионизации, именуемый пиком Брэгга. При этом доза в пике превосходит таковую в окружающих тканях в 2,5 – 3,5 раза.

Пи-мезонное излучение – поток элементарных частиц, имеющих массу, промежуточную между массой электрона и протона. Мезоны могут быть положительными (+), отрицательными (–) и нейтральными (°). Заряд положительных и отрицательных пи-мезонов равен заряду электрона, а масса составляет 273,2 массы электрона. Как и у протонов, плотность ионизации у пи-мезонов растет к концу пробега (пик Брэгга). Однако, в отличие от протонов, остановившиеся отрицательные пи-мезоны захватываются ядрами атомов кислорода, углерода, азота или водорода, а затем расщепляют ядра с высвобождением громадного количества энергии, т.е. образуется максимум ионизации. При этом соотношение дозы в пике к дозе в окружающих тканях достигает 10/1. Основным источником мезонов являются ускорители.

Тяжелые ионы – ионы кислорода, азота, неона, аргона – имеют положительный заряд, обладают высокой плотностью ионизации и образуют пик Брэгга. Источником тяжелых ионов являются ускорители.

Физические свойства корпускулярных излучений супервольтных энергий представлены в таблице 3.

Таблица 3 – Свойства корпускулярных излучений супервольтных энергий

Источник

Виды излучений

В конце XIX в. была открыта естественная радиоактивность некоторых элементов, сопровождающаяся излучением невидимых лучей. Рассмотрим кратко виды и характеристики различных излучений.

Виды излучений – кратко таблица характеристики и применения, диапазоны альфа, бета, гамма (11 класс)

Понятие и виды излучения

Как известно в 11 классе, внутренняя энергия вещества может передаваться с помощью контактной теплопередачи, конвекции и излучения.

Виды излучений – кратко таблица характеристики и применения, диапазоны альфа, бета, гамма (11 класс)

Рис. 1. Теплопередача, конвекция, излучение.

Рассмотрим излучение — передачу энергии вещества, которая происходит на расстоянии. В зависимости от массы покоя носителя энергии, излучение можно разделить на:

  • излучение безмассовых фотонов;
  • радиоактивное излучение частиц, имеющих массу (альфа, бета, гамма, нейтронное).

Фотонное излучение

Фотоны можно считать чистыми квантами энергии. Они не имеют массы покоя, а это значит, что покоящихся фотонов не бывает: они всегда движутся со скоростью света и несут энергию. Поскольку свойства фотонов сильно меняются в зависимости от их частоты, этот вид излучения делится на:

  • радиоизлучение;
  • ИК-излучение;
  • видимое излучение;
  • УФ-излучение;
  • рентгеновское излучение;
  • γ-излучение.

От начала к концу этого списка у фотонов увеличивается частота и энергия. При этом уменьшаются волновые проявления и нарастают корпускулярные. Если диапазон радиоизлучения демонстрирует практически только свойства волны, то γ-излучение имеет такую малую длину волны, что волновые свойства у него обнаружить очень трудно.

Читайте также:  Природные явления слоев атмосферы

Вследствие этого от начала к концу списка у фотонного излучения уменьшается способность огибания препятствий, но при этом увеличивается проникающая способность.

С большинством из этих видов излучения человек часто имеет дело и находит для них применение в жизни, в первую очередь в качестве источников света.

Виды излучений – кратко таблица характеристики и применения, диапазоны альфа, бета, гамма (11 класс)

Рис. 2. Шкала электромагнитных излучений.

Радиоактивные виды излучения

С открытием радиоактивности выяснилось, что излучение может осуществляться частицами, имеющими массу. В первую очередь это α- и β- излучения, сопровождающие радиоактивный распад многих тяжелых элементов (при этом также излучаются и γ-кванты).

α-излучение — это поток тяжелых частиц, имеющих атомный вес 4 и заряд 2. То есть фактически каждая α-частица представляет собой ядро гелия.

Система из двух протонов и двух нейтронов оказывается очень устойчивой энергетически, поэтому при распаде тяжелых ядер наиболее «выгодно» отщепление не отдельных протонов и нейтронов, а вот таких систем. Именно поэтому α-радиоактивными являются практически все тяжелые ядра с массовым числом более 208.

β-излучение — это поток быстрых электронов. Такое излучение характерно для ядер с большим избытком нейтронов.

Избыток нейтронов позволяет ядрам быть устойчивыми к кулоновскому отталкиванию, поскольку нейтроны участвуют в сильном взаимодействии, скрепляющем ядро, при этом не участвуют в электромагнитном взаимодействии, разрывающим его. Однако нейтроны являются стабильными только в связке с протонами. Свободный нейтрон нестабилен и распадается на протон, электрон и антинейтрино. Так и происходит в ядрах, в которых существует большой избыток нейтронов.

Также существует и нейтронное излучение. Оно сопровождает спонтанный распад тяжелых ядер, поскольку в тяжелых ядрах имеется избыток нейтронов, который становится «лишним», для осколков. Однако, такое радиоактивное излучение — достаточно редкий процесс.

Можно составить таблицу видов излучений:

Виды излучений – кратко таблица характеристики и применения, диапазоны альфа, бета, гамма (11 класс)

Рис. 3. Таблица видов излучений.

Что мы узнали?

Излучение — это передача энергии вещества, которая происходит на расстоянии. Наиболее часто оно осуществляется безмассовыми фотонами — квантами энергии. Существует также и радиоактивное излучение, осуществляющееся частицами, имеющими массу покоя.

Физика Активное сопротивление – амплитуда, формула для закона Ома, пример энергия, величина (11 класс)

Источник

Виды излучений

В конце XIX в. была открыта естественная радиоактивность некоторых элементов, сопровождающаяся излучением невидимых лучей. Рассмотрим кратко виды и характеристики различных излучений.

Понятие и виды излучения

Как известно в 11 классе, внутренняя энергия вещества может передаваться с помощью контактной теплопередачи, конвекции и излучения.

Рассмотрим излучение — передачу энергии вещества, которая происходит на расстоянии. В зависимости от массы покоя носителя энергии, излучение можно разделить на:

  • излучение безмассовых фотонов;
  • радиоактивное излучение частиц, имеющих массу (альфа, бета, гамма, нейтронное).

Фотонное излучение

Фотоны можно считать чистыми квантами энергии. Они не имеют массы покоя, а это значит, что покоящихся фотонов не бывает: они всегда движутся со скоростью света и несут энергию. Поскольку свойства фотонов сильно меняются в зависимости от их частоты, этот вид излучения делится на:

  • радиоизлучение;
  • ИК-излучение;
  • видимое излучение;
  • УФ-излучение;
  • рентгеновское излучение;
  • γ-излучение.

От начала к концу этого списка у фотонов увеличивается частота и энергия. При этом уменьшаются волновые проявления и нарастают корпускулярные. Если диапазон радиоизлучения демонстрирует практически только свойства волны, то γ-излучение имеет такую малую длину волны, что волновые свойства у него обнаружить очень трудно.

Вследствие этого от начала к концу списка у фотонного излучения уменьшается способность огибания препятствий, но при этом увеличивается проникающая способность.

С большинством из этих видов излучения человек часто имеет дело и находит для них применение в жизни, в первую очередь в качестве источников света.

Шкала электромагнитных излучений

Радиоактивные виды излучения

С открытием радиоактивности выяснилось, что излучение может осуществляться частицами, имеющими массу. В первую очередь это α- и β- излучения, сопровождающие радиоактивный распад многих тяжелых элементов (при этом также излучаются и γ-кванты).

α-излучение — это поток тяжелых частиц, имеющих атомный вес 4 и заряд 2. То есть фактически каждая α-частица представляет собой ядро гелия.

Система из двух протонов и двух нейтронов оказывается очень устойчивой энергетически, поэтому при распаде тяжелых ядер наиболее «выгодно» отщепление не отдельных протонов и нейтронов, а вот таких систем. Именно поэтому α-радиоактивными являются практически все тяжелые ядра с массовым числом более 208.

β-излучение — это поток быстрых электронов. Такое излучение характерно для ядер с большим избытком нейтронов.

Избыток нейтронов позволяет ядрам быть устойчивыми к кулоновскому отталкиванию, поскольку нейтроны участвуют в сильном взаимодействии, скрепляющем ядро, при этом не участвуют в электромагнитном взаимодействии, разрывающим его. Однако нейтроны являются стабильными только в связке с протонами. Свободный нейтрон нестабилен и распадается на протон, электрон и антинейтрино. Так и происходит в ядрах, в которых существует большой избыток нейтронов.

Также существует и нейтронное излучение. Оно сопровождает спонтанный распад тяжелых ядер, поскольку в тяжелых ядрах имеется избыток нейтронов, который становится «лишним», для осколков. Однако, такое радиоактивное излучение — достаточно редкий процесс.

Можно составить таблицу видов излучений:

Таблица видов излучений

Что мы узнали?

Излучение — это передача энергии вещества, которая происходит на расстоянии. Наиболее часто оно осуществляется безмассовыми фотонами — квантами энергии. Существует также и радиоактивное излучение, осуществляющееся частицами, имеющими массу покоя.

Источник

Читайте также:  Работодатель здоровье от природы
Оцените статью