Технология разделения природного газа

Технологическая схема разделения природных газов

На рисунке представлена современная схема системы установок для получения газолина и индивидуальных углеводородных компо­нентов. Исходный газ поступает в абсорберы, после чего выделен­ные углеводороды С2 и выше разделяются в нескольких колоннах. Таким путем получают пропан, бутан, изопентан, н-пентан, гексан. На рисунке показаны количества газов, поступающих из отдельных колонн, а также давления и температуры, которые поддерживаются в колоннах.

Углеводороды С2 — С4 выделяют также из легких бензиновых фракций. При этом сырьем является газовый бензин, получающий­ся при переработке попутных газов и при стабилизации бензинов прямой перегонки. Газовый бензин разделяется на метано-этановую, пропановую и бутановую фракции. Главная задача — выделение пропана.

Пропан выделяется в колонне, имеющей 34 тарелки типа Алко и работающей при 20 aт и температуре верха 50 °С. Установка обеспе­чивает получение пропана 95%-ной чистоты с отбором от потенциала 50%.

Этановая колонна имеет 34 тарелки типа Алко и работает при давлении 30 aт и температуре верха 30 °С. Было выявлено, что в этих условиях в этановой колонне не создается необходимого количества орошения, вследствие чего пропановая и этановая фракции разде­ляются нечетко.

Пентаны выделяют на изопентановой и пентановой колоннах с пропускной способностью 3180 м 3 /сутки. Эти колонны двойные и состоят каждая из двух колонн по 50 тарелок, включенных после­довательно и работающих как одна. Имеется также колонна для удаления из природного газа тяжелых фракций, которые попадают в него при перекачке по заводскому сырьевому трубопроводу.

Исходный природный газ поступает параллельно в бутановые колонны, работа которых регулируется автоматически хроматогра­фами. Отгон идет в пропановую колонну, а остаток после обработки щелочью пропускают через песчаные фильтры, откуда он поступает в изобутановую колонну. Полученные бутан и изобутан отводят в хранилище.

Нижний продукт из бутановых колонн очищают раствором полисульфидов для удаления свободной серы и H2S, затем через фильтры подают их на обработку сухой хлористой медью и далее в пентановую колонну. Головной продукт разгоняют в изопентановой колонне на н-пентан и изопентан. Работа этих колонн регулируется в кон­тролируется дифференциальными рефрактометрами.

Технологическая схема разделения природного газа

1 — абсорберы; 2 — дегидратор; 3 — деэтанизатор; 4 — отпарная колонна; 5 — дебутанизатор; 6 — депропанизатор; 7 — депентанизатор; 8 — деизопентанизаторы.

Читайте также:  Слет юных друзей природы

Линии: I- впуск газа; II — остаточный газ; III — на факел; IV — пар; V — пере­гретый пар; VI — изопентан; VII — н-пентан; VIII — гексан; IX — пропан; X — бутан.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Очистка и разделение газовых смесей

Газообразное сырьё бывает природного и промышленного происхождения. Природное сырьё представлено углеводородными газа ми (природный газ) и воздухом. В качестве газообразного сырья промышленного происхождения используются газы коксохимического производства (коксовый газ), газы нефтепереработки (попутный газ), газы металлургических производств, газы переработки твёрдого топлива (генераторный газ).

Методы обогащения газообразных многокомпонентных систем (или очистка и разделение газовых смесей) основаны на различии свойств компонентов смеси (например, на различии температур кипения, растворимости в каком-либо растворителе, сорбционной способности).

Приведём примеры очистки и разделения газовых смесей, имеющих место в неорганических производствах.

– разделяют воздух на азот и кислород; азот используется в производстве аммиака, а кислород – как окислитель в химической промышленности и в металлургии. Кроме того, из воздуха выделяют аргон;

– из коксового газа выделяют аммиак в виде сульфата аммония; водород, используемый далее для получения азотоводородной смеси; и сероводород, который используется для получения серной кислоты.

– природный газ, применяемый в производстве аммиака, очищают от серосодержащих соединений;

– конвертированный газ производства аммиака очищают от диоксида углерода;

– перед колонной синтеза аммиака азотоводородную смесь очищают от следов кислород содержащих соединений (СО и СО2).

Существуют следующие основные методы разделения газовых смесей: конденсация, сорбционные методы, мембранное разделение.

Суть метода конденсации заключается в том, что при охлаждении газовой смеси более высококипящие компоненты конденсируются первыми и отделяются в сепараторах. В производстве синтетического аммиака методом конденсации отделяют аммиак от непрореагировавшей азотоводородной смеси. Из коксового газа фракционным охлаждением выделяется водород.

Сорбционные методы основаны на различной сорбционной способности компонентов каким-либо поглотителем. Процесс, обратный сорбции, называется десорбцией. Сорбция и десорбция – два взаимосвязанных процесса. Когда скорость сорбции равна скорости десорбции, устанавливается динамическое равновесие. Благоприятными условиями для сорбции, то есть для поглощения газа, являются низкая температура и высокое давление. Благоприятными условиями для десорбции являются повышенная температура и пониженное давление.

Читайте также:  Охрана природных ресурсов лесов

В сорбционных процессах выделяют: адсорбцию и абсорбцию.

Адсорбция – это процесс поглощения одного или нескольких компонентов газовой смеси твёрдой поверхностью адсорбента. Процесс поглощения (очистки) осуществляют в аппаратах, называемых адсорберами. Адсорберы бывают: с неподвижным слоем адсорбента, с движущимся слоем, а также с кипящим слоем. Адсорбер работает в режиме «адсорбция ↔ десорбция».

В ходе очистки газа адсорбент сначала насыщается газообразным компонентом-примесью (его называют адсорбат), затем при соответствующем изменении условий процесса следует десорбция, в результате адсорбент восстанавливается. В качестве адсорбента используют: активированный уголь, цеолиты, пористые стёкла.

Абсорбция – это избирательное поглощение одного или нескольких компонентов газовой смеси жидким поглотителем (абсорбентом). Производственный цикл включает абсорбцию (при низких температурах и повышенных давлениях) и десорбцию поглощённого вещества (при нагревании и снижении давления). В качестве абсорбентов обычно используются органические и неорганические растворители. Как правило, процессы абсорбции и десорбции пространственно разделены. Очистка и разделение газовой смеси проходит в двух аппаратах. В одном (абсорбере) протекает абсорбция какого-либо компонента охлаждённым абсорбентом, в другом (регенераторе) – десорбция, при этом выделяется поглощённое вещество из раствора и регенерируется абсорбент. В регенераторе – повышенная температура и пониженное давление.

В сорбционных методах, особенно при абсорбции, имеет место не только физико-химическое поглощение одного вещества другим, но и химическое взаимодействие. В этом случае интенсификация процесса во многом зависит от скорости химической реакции. А скорость химической реакции, как известно, зависит от следующих факторов: концентрации, температуры, давления.

Следует отметить, что поглощение на твёрдом поглотителе называется сухой очисткой, поглощение раствором – мокрой.

Мембранный метод очистки газовых смесей основан на разделении с помощью микропористых перегородок (или мембран), проницаемых для молекул одного вида и непроницаемых для молекул другого вида. Мембранный метод разделения наиболее совершенный, так как исключены высокие давления и низкие температуры. В мембранных аппаратах разделяют воздух на азот и кислород, метан и водород, метан и гелий.

Следует отметить, что газы очищают также от пыли, например: в сернокислотном производстве очищают печной газ, полученный при обжиге колчедана; очищают воздух, подаваемый на окисление, в производстве серной и азотной кислот.

Читайте также:  Праздник юных любителей природы

Особо следует отметить, что в технологии неорганических веществ необходимо очищать газовые смеси от влаги, например: воздух, подаваемый на окисление, подвергается осушке.

Метод конденсации основан на различии температур кипения компонентов.

При разделении газов методом глубокого охлаждения газовую смесь охлаждают до очень низких температур, при этом происходит последовательное сжижение составляющих компонентов, каждая фракция переходит в жидкое состояние при своей температуре. Таким способом можно разделить газовую смесь на отдельные компоненты или фракции.

Область низких температур делят:

– на умеренный холод (интервал температур от – 70 до – 100 0 С);

– глубокий холод (температуры ниже – 100 0 С).

Для охлаждения до умеренного холода в качестве хладагентов обычно используются сжиженные газы: аммиак (t кип = – 33,35 0 С),

диоксид серы (t кип = – 10,0 0 С), пропан (t кип = – 42,1 0 С),

бутан (t кип = – 0,5 0 С),то есть вещества с низкими температурами кипения. Охлаждение газа происходит вследствие того, что хладагент поглощает тепло при испарении.

Умеренное охлаждение применяется в различных отраслях химической и пищевой промышленности, а также при горных работах.

Глубоким холодом пользуются для сжижения воздуха

(t кип = – 192,0 0 С), и последующего выделения из него азота

(t кип = – 195,8 0 С), кислорода (t кип = – 182,0 0 С), и аргона (t кип = – 185,9 0 С).

Глубокое охлаждение применяют также для выделения водорода (t кип = – 252,8 0 С) из коксового газа, этилена (t кип = – 103,7 0 С) из газов крекинга углеводородов

Для получения глубокого холода применяют холодильные машины. Работа холодильных машин основана на свойстве реальных газов охлаждаться при расширении в определённых условиях.

Расширение газа при переходе от высокого давления к низкому без совершения работы называется дросселированием.

При расширении (дросселировании) реального газа без совершения внешней работы и без теплообмена с окружающей средой происходит охлаждение газа, так как совершается работа по преодолению сил притяжения между молекулами, в результате чего температура газа понижается. Это явление называется эффектом Джоуля – Томсона. Его используют для достижения низких температур.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

Оцените статью