8.3. Температура горения
В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tж — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха α = 1,0 и при температуре газа и воздуха, равной 0°C:
где Qн — низшая теплота сгорания газа, кДж/м 3 ; ΣVcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м 3 газа (м 3 /м 3 ), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tж (кДж/(м 3 •°С).
В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (≈2000°С), при α = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.3 находится их средняя теплоемкость и затем по формуле (8.11) считается жаропроизводительность газа. Если в результате подсчета она окажется ниже или выше принятой, то задается другая температура и расчет повторяется.
Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.4.
При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25–30°С.
Калориметрическая температура горения tK — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tж тем, что температура газа и воздуха, а также коэффициент избытка воздуха α принимаются по их действительным значениям. Определить tK можно по формуле:
где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м 3 .
Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик. Поэтому при определении калориметрической температуры теплосодержание газов можно не учитывать. При сжигании газов с низкой теплотой сгорания (генераторные, доменные и др.) их теплосодержание (в особенности нагретых до сжигания) оказывает весьма существенное влияние на калориметрическую температуру.
Зависимость калориметрической температуры природного газа среднего состава в воздухе с температурой 0°С и влажностью 1% от коэффициента избытка воздуха а приведена в табл. 8.5, для сжиженного углеводородного газа при его сжигании в сухом воздухе — в табл. 8.7. Данными табл. 8.5–8.7 можно с достаточной точностью руководствоваться при установлении калориметрической температуры горения других природных газов, сравнительно близких по составу, и углеводородных газов практически любого состава. При необходимости получить высокую температуру при сжигании газов с малыми коэффициентами избытка воздуха, а также для повышения КПД печей, на практике подогревают воздух, что приводит к росту калориметрической температуры (см. табл. 8.6).
Теоретическая температура горения tT — максимальная температура, определяемая аналогично калориметрической tK, но с поправкой на эндотермические (требующие теплоты) реакции диссоциации диоксида углерода и водяного пара, идущие с увеличением объема:
СО2 ‹–› СО + 0,5О2 — 283 мДж/моль (8.13)
Н2О ‹–› Н2 + 0,5О2 — 242 мДж/моль (8.14)
При высоких температурах диссоциация может привести к образованию атомарного водорода, кислорода и гидроксильных групп ОН. Кроме того, при сжигании газа всегда образуется некоторое количество оксида азота. Все эти реакции эндотермичны и приводят к снижению температуры горения.
Теоретическая температура горения может быть определена по следующей формуле:
где qдис — суммарные затраты теплоты на диссоциацию СО2 и Н2О в продуктах сгорания, кДж/м 3 ; ΣVcp — сумма произведения объема и средней теплоемкости продуктов сгорания с учетом диссоциации на 1 м 3 газа.
Как видно из табл. 8.8, при температуре до 1600°С степень диссоциации может не учитываться, и теоретическую температуру горения может принять равной калориметрической. При более высокой температуре степень диссоциации может существенно снижать температуру в рабочем пространстве. На практике особой необходимости в этом нет, теоретическую температуру горения необходимо определять только для высокотемпературных печей, работающих на предварительно нагретом воздухе (например, мартеновских). Для котельных установок в этом нужды нет.
Действительная (расчетная) температура продуктов сгорания tд — температура, которая достигается в реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др. Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов:
где η— т.н. пирометрический коэффициент, укладывающийся в пределах:
— для качественно выполненных термических и нагревательных печей с теплоизоляцией — 0,75–0,85;
— для герметичных печей без теплоизоляции — 0,70–0,75;
— для экранированных топок котлов — 0,60–0,75.
В практике надо знать не только приведенные выше адиабатные температуры горения, но и максимальные температуры, возникающие в пламени. Их приближенные значения обычно устанавливают экспериментально методами спектрографии. Максимальные температуры, возникающие в свободном пламени на расстоянии 5–10 мм от вершины конусного фронта горения, приведены в табл. 8.9. Анализ приведенных данных показывает, что максимальные температуры в пламени меньше жаропроизводительности (за счет затрат тепла на диссоциацию Н2О и СО2 и отвода теплоты из пламенной зоны).
Таблица 8.3. Средняя объемная теплоемкость газов, кДж/(м 3 •°С)
Температура, °С | CO2 | N2 | O2 | CO | CH4 | H2 | H2O (водяные пары) | воздух | |
сухой | влажный на 1 м 3 сухого газа | ||||||||
0 | 1,5981 | 1,2970 | 1,3087 | 1,3062 | 1,5708 | 1,2852 | 1,4990 | 1,2991 | 1,3230 |
100 | 1,7186 | 1,2991 | 1,3209 | 1,3062 | 1,6590 | 1,2978 | 1,5103 | 1,3045 | 1,3285 |
200 | 1,8018 | 1,3045 | 1,3398 | 1,3146 | 1,7724 | 1,3020 | 1,5267 | 1,3142 | 1,3360 |
300 | 1,8770 | 1,3112 | 1,3608 | 1,3230 | 1,8984 | 1,3062 | 1,5473 | 1,3217 | 1,3465 |
400 | 1,9858 | 1,3213 | 1,3822 | 1,3356 | 2,0286 | 1,3104 | 1,5704 | 1,3335 | 1,3587 |
500 | 2,0030 | 1,3327 | 1,4024 | 1,3482 | 2,1504 | 1,3104 | 1,5943 | 1,3469 | 1,3787 |
600 | 2,0559 | 1,3453 | 1,4217 | 1,3650 | 2,2764 | 1,3146 | 1,6195 | 1,3612 | 1,3873 |
700 | 2,1034 | 1,3587 | 1,3549 | 1,3776 | 2,3898 | 1,3188 | 1,6464 | 1,3755 | 1,4020 |
800 | 2,1462 | 1,3717 | 1,4549 | 1,3944 | 2,5032 | 1,3230 | 1,6737 | 1,3889 | 1,4158 |
900 | 2,1857 | 1,3857 | 1,4692 | 1,4070 | 2,6040 | 1,3314 | 1,7010 | 1,4020 | 1,4293 |
1000 | 2,2210 | 1,3965 | 1,4822 | 1,4196 | 2,7048 | 1,3356 | 1,7283 | 1,4141 | 1,4419 |
1100 | 2,2525 | 1,4087 | 1,4902 | 1,4322 | 2,7930 | 1,3398 | 1,7556 | 1,4263 | 1,4545 |
1200 | 2,2819 | 1,4196 | 1,5063 | 1,4448 | 2,8812 | 1,3482 | 1,7825 | 1,4372 | 1,4658 |
1300 | 2,3079 | 1,4305 | 1,5154 | 1,4532 | – | 1,3566 | 1,8085 | 1,4482 | 1,4771 |
1400 | 2,3323 | 1,4406 | 1,5250 | 1,4658 | – | 1,3650 | 1,8341 | 1,4582 | 1,4876 |
1500 | 2,3545 | 1,4503 | 1,5343 | 1,4742 | – | 1,3818 | 1,8585 | 1,4675 | 1,4973 |
1600 | 2,3751 | 1,4587 | 1,5427 | – | – | – | 1,8824 | 1,4763 | 1,5065 |
1700 | 2,3944 | 1,4671 | 1,5511 | – | – | – | 1,9055 | 1,4843 | 1,5149 |
1800 | 2,4125 | 1,4746 | 1,5590 | – | – | – | 1,9278 | 1,4918 | 1,5225 |
1900 | 2,4289 | 1,4822 | 1,5666 | – | – | – | 1,9698 | 1,4994 | 1,5305 |
2000 | 2,4494 | 1,4889 | 1,5737 | 1,5078 | – | – | 1,9694 | 1,5376 | 1,5376 |
2100 | 2,4591 | 1,4952 | 1,5809 | – | – | – | 1,9891 | – | – |
2200 | 2,4725 | 1,5011 | 1,5943 | – | – | – | 2,0252 | – | – |
2300 | 2,4860 | 1,5070 | 1,5943 | – | – | – | 2,0252 | – | – |
2400 | 2,4977 | 1,5166 | 1,6002 | – | – | – | 2,0389 | – | – |
2500 | 2,5091 | 1,5175 | 1,6045 | – | – | – | 2,0593 | – | – |
Таблица 8.4. Жаропроизводительность газов в сухом воздухе
Простой газ | Жаропроизводительность, °С | Сложный газ усредненного состава | Приближенная жаропроизводительность, °С |
Водород | 2235 | Природный газовых месторождений | 2040 |
Оксид углерода | 2370 | Природный нефтяных месторождений | 2080 |
Метан | 2043 | Коксовый | 2120 |
Этан | 2097 | Высокотемпературной перегонки сланцев | 1980 |
Пропан | 2110 | Парокислородного дутья под давлением | 2050 |
Бутан | 2118 | Генераторный из жирных углей | 1750 |
Пентан | 2119 | Генераторный паровоздушного дутья из тощих топлив | 1670 |
Этилен | 2284 | Сжиженный (50% С3Н4+50% С4Н10) | 2115 |
Ацетилен | 2620 | Водяной | 2210 |
Таблица 8.5. Калориметрическая и теоретическая температуры горения природного газа в воздухе с t = 0°С и влажностью 1%* в зависимости от коэффициента избытка воздуха α
Коэффициент избытка воздуха α | Калориметрическая температура горения tк, °С | Теоретическая температура горения tт, °С | Коэффициент избытка воздуха α | Калориметрическая температура горения tк, °С |
1,0 | 2010 | 1920 | 1,33 | 1620 |
1,02 | 1990 | 1900 | 1,36 | 1600 |
1,03 | 1970 | 1880 | 1,40 | 1570 |
1,05 | 1940 | 1870 | 1,43 | 1540 |
1,06 | 1920 | 1860 | 1,46 | 1510 |
1,08 | 1900 | 1850 | 1,50 | 1470 |
1,10 | 1880 | 1840 | 1,53 | 1440 |
1,12 | 1850 | 1820 | 1,57 | 1410 |
1,14 | 1820 | 1790 | 1,61 | 1380 |
1,16 | 1800 | 1770 | 1,66 | 1350 |
1,18 | 1780 | 1760 | 1,71 | 1320 |
1,20 | 1760 | 1750 | 1,76 | 1290 |
1,22 | 1730 | – | 1,82 | 1260 |
1,25 | 1700 | – | 1,87 | 1230 |
1,28 | 1670 | – | 1,94 | 1200 |
1,30 | 1650 | – | 2,00 | 1170 |
Таблица 8.6. Калориметрическая температура горения природного газа tк, °С, в зависимости от коэффициента избытка сухого воздуха и его температуры (округленные значения)
Коэффициент избытка воздуха α | Температура сухого воздуха, °С | ||||||||
20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | |
0,5 | 1380 | 1430 | 1500 | 1545 | 1680 | 1680 | 1740 | 1810 | 1860 |
0,6 | 1610 | 1650 | 1715 | 1780 | 1840 | 1900 | 1960 | 2015 | 2150 |
0,7 | 1730 | 1780 | 1840 | 1915 | 1970 | 2040 | 2100 | 2200 | 2250 |
0,8 | 1880 | 1940 | 2010 | 2060 | 2130 | 2200 | 2260 | 2330 | 2390 |
0,9 | 1980 | 2030 | 2090 | 2150 | 2220 | 2290 | 2360 | 2420 | 2500 |
1,0 | 2050 | 2120 | 2200 | 2250 | 2320 | 2385 | 2450 | 2510 | 2560 |
1,2 | 1810 | 1860 | 1930 | 2000 | 2070 | 2140 | 2200 | 2280 | 2350 |
1,4 | 1610 | 1660 | 1740 | 1800 | 2870 | 1950 | 2030 | 2100 | 2160 |
1,6 | 1450 | 1510 | 1560 | 1640 | 1730 | 1800 | 1860 | 1950 | 2030 |
1,8 | 1320 | 1370 | 1460 | 1520 | 1590 | 1670 | 1740 | 1830 | 1920 |
2,0 | 1220 | 1270 | 1360 | 1420 | 1490 | 1570 | 1640 | 1720 | 1820 |
Таблица 8.7. Калориметрическая температура горения tк технического пропана в сухом воздухе с t = 0°С в зависимости от коэффициента избытка воздуха α
Коэффициент избытка воздуха α | Калориметрическая температура горения tк, °С | Коэффициент избытка воздуха α | Калориметрическая температура горения tк, °С |
1,0 | 2110 | 1,45 | 1580 |
1,02 | 2080 | 1,48 | 1560 |
1,04 | 2050 | 1,50 | 1540 |
1,05 | 2030 | 1,55 | 1500 |
1,07 | 2010 | 1,60 | 1470 |
1,10 | 1970 | 1,65 | 1430 |
1,12 | 1950 | 1,70 | 1390 |
1,15 | 1910 | 1,75 | 1360 |
1,20 | 1840 | 1,80 | 1340 |
1,25 | 1780 | 1,85 | 1300 |
1,27 | 1750 | 1,90 | 1270 |
1,30 | 1730 | 1,95 | 1240 |
1,35 | 1670 | 2,00 | 1210 |
1,40 | 1630 | 2,10 | 1170 |
Таблица 8.8. Степень диссоциации водяного пара H2O и диоксида углерода CO2 в зависимости от парциального давления
Температура, °С | Парциальное давление, МПа | |||||||||||
0,004 | 0,006 | 0,008 | 0,010 | 0,012 | 0,014 | 0,016 | 0,018 | 0,020 | 0,025 | 0,030 | 0,040 | |
Водяной пар H2O | ||||||||||||
1600 | 0,85 | 0,75 | 0,65 | 0,60 | 0,58 | 0,56 | 0,54 | 0,52 | 0,50 | 0,48 | 0,46 | 0,42 |
1700 | 1,45 | 1,27 | 1,16 | 1,08 | 1,02 | 0,95 | 0,90 | 0,85 | 0,8 | 0,76 | 0,73 | 0,67 |
1800 | 2,40 | 2,10 | 1,90 | 1,80 | 1,70 | 1,60 | 1,53 | 1,46 | 1,40 | 1,30 | 1,25 | 1,15 |
1900 | 4,05 | 3,60 | 3,25 | 3,0 | 2,85 | 2,70 | 2,65 | 2,50 | 2,40 | 2,20 | 2,10 | 1,9 |
2000 | 5,75 | 5,05 | 4,60 | 4,30 | 4,0 | 3,80 | 3,55 | 3,50 | 3,40 | 3,15 | 2,95 | 2,65 |
2100 | 8,55 | 7,50 | 6,80 | 6,35 | 6,0 | 5,70 | 5,45 | 5,25 | 5,10 | 4,80 | 4,55 | 4,10 |
2200 | 12,3 | 10,8 | 9,90 | 9,90 | 8,80 | 8,35 | 7,95 | 7,65 | 7,40 | 6,90 | 6,50 | 5,90 |
2300 | 16,0 | 15,0 | 13,7 | 12,9 | 12,2 | 11,6 | 11,1 | 10,7 | 10,4 | 9,6 | 9,1 | 8,4 |
2400 | 22,5 | 20,0 | 18,4 | 17,2 | 16,3 | 15,6 | 15,0 | 14,4 | 13,9 | 13,0 | 12,2 | 11,2 |
2500 | 28,5 | 25,6 | 23,5 | 22,1 | 20,9 | 20,0 | 19,3 | 18,6 | 18,0 | 16,8 | 15,9 | 14,6 |
3000 | 70,6 | 66,7 | 63,8 | 61,6 | 59,6 | 58,0 | 56,5 | 55,4 | 54,3 | 51,9 | 50,0 | 47,0 |
Диоксид углерода CO2 | ||||||||||||
1500 | 0,5 | 0,5 | 0,5 | 0,5 | 0,5 | 0,5 | 0,4 | 0,4 | 0,4 | 0,4 | 0,4 | – |
1600 | 2,0 | 1,8 | 1,6 | 1,5 | 1,45 | 1,4 | 1,35 | 1,3 | 1,25 | 1,2 | 1,1 | |
1700 | 3,8 | 3,3 | 3,0 | 2,8 | 2,6 | 2,5 | 2,4 | 2,3 | 2,2 | 2,0 | 1,9 | |
1800 | 6,3 | 5,5 | 5,0 | 4,6 | 4,4 | 4,2 | 4,0 | 3,8 | 3,7 | 3,5 | 3,3 | |
1900 | 10,1 | 8,9 | 8,1 | 7,6 | 7,2 | 6,8 | 6,5 | 6,3 | 6,1 | 5,6 | 5,3 | |
2000 | 16,5 | 14,6 | 13,4 | 12,5 | 11,8 | 11,2 | 10,8 | 10,4 | 10,0 | 9,4 | 8,8 | |
2100 | 23,9 | 21,3 | 19,6 | 18,3 | 17,3 | 16,5 | 15,9 | 15,3 | 14,9 | 13,9 | 13,1 | |
2200 | 35,1 | 31,5 | 29,2 | 27,5 | 26,1 | 25,0 | 24,1 | 23,3 | 22,6 | 21,2 | 20,1 | |
2300 | 44,7 | 40,7 | 37,9 | 35,9 | 34,3 | 32,9 | 31,8 | 30,9 | 30,0 | 28,2 | 26,9 | |
2400 | 56,0 | 51,8 | 48,8 | 46,5 | 44,6 | 43,1 | 41,8 | 40,6 | 39,6 | 37,5 | 35,8 | |
2500 | 66,3 | 62,2 | 59,3 | 56,9 | 55,0 | 53,4 | 52,0 | 50,7 | 49,7 | 47,3 | 45,4 | |
3000 | 94,9 | 93,9 | 93,1 | 92,3 | 91,7 | 90,6 | 90,1 | 89,6 | 88,5 | 87,6 | 86,8 |
Таблица 8.9. Максимальные температуры, возникающие в свободном пламени, °С
Газ | Газовоздушная смесь, близкая по составу к стехиометрической | Газокиcлородная смесь |
H2 | 2045 | 2660 |
CO | 2100 | 2920 |
CH4 | 1870 | 2740 |
C2H6 | 1890 | – |
C3H8 | 1920 | 2780 |
C4H10 | 1890 | – |
C2H2 | 2320 | 3000 |
Наша компания является представителем и сервисным центром компаний Фасэнергомаш, Corken, ReGo, Edur
на территории РФ
Источник