- Третий закон Ньютона: формулировка третьего закона Ньютона; характеристика сил действия и противодействия: модуль, направление, точка приложения, природа.
- Закон всемирного тяготения. Сила тяжести; вес и невесомость.
- Силы упругости: природа сил упругости; виды упругих деформаций; закон Гука
- Третий закон Ньютона. Силы в природе. Силы инерции
Третий закон Ньютона: формулировка третьего закона Ньютона; характеристика сил действия и противодействия: модуль, направление, точка приложения, природа.
I II Закон Ньютона
Закон всемирного тяготения. Сила тяжести; вес и невесомость.
- Закон всемирного тяготения: Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:
G – гравитационная постоянная равная Впервые гравитационная постоянная была измерена английским физиком Г.Кавендишем в 1789г. С помощью прибора, называемого крутильными весами.
- Силой тяжести называют силу, с которой Земля притягивает тело, находящееся на её поверхности или вблизи неё. Вес тела — сила, с которой тело действует на опору или подвес.
- Наступление у тел состояния невесомости означает, что тела не давят на опору и, следовательно, на них не действует сила реакции опоры, они движутся только под действием силы притяжения к Земле.
Силы упругости: природа сил упругости; виды упругих деформаций; закон Гука
- Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Силы упругости обычно возникают при деформации тел (изменение объема или формы тела), а деформация тела возникает, когда различные части тела совершают различные колебания.
- Существуют различные виды деформации. Упругая деформация – когда после прекращения действия на тело внешних сил, оно принимает прежнюю форму и объем, если же не принимает, то это уже пластическая деформация. Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба, кручения и сдвига.
- Закон Гука: при упругой деформации растяжения (или сжатия) удлинение тела прямо пропорционально приложенной силе. ( )
Источник
Третий закон Ньютона. Силы в природе. Силы инерции
Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой, а второе — на первое с силой. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.
Материальные точки взаимодействуют друг с другом силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению: |
Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства
Эта тема будет посвящена рассмотрению особого вида сил – сил инерции. Особенность этих сил состоит в следующем. Все механические силы – будь то силы гравитационного, упругого взаимодействия или силы трения – возникают тогда, когда на тело имеет место воздействие со стороны других тел. С силами инерции дело обстоит иначе.
Для начала вспомним, что такое инерция. Инерция – это физическое явление, состоящее в том, что тело всегда стремится сохранить свою первоначальную скорость. И силы инерции возникают тогда, когда у тела изменяется скорость – т.е. появляется ускорение. В зависимости от того, в каком движении принимает участие тело, у него возникает то или иное ускорение, и оно порождает ту или иную силу инерции. Но все эти силы объединяет одна и та же закономерность: сила инерции всегда направлена противоположно ускорению ее породившему.
По своей природе силы инерции отличаются от других механических сил. Все остальные механические силы возникают в результате воздействия одного тела на другое. Тогда как силы инерции обусловлены свойствами механического движения тела. Кстати, в зависимости от того, в каком движении участвует тело, возникает та или иная сила инерции:
• движение может быть прямолинейным, и тогда речь пойдет о силе инерции поступательного движения;
• движение может быть криволинейным, и тогда речь пойдет о центробежной силе инерции;
• наконец, движение может быть одновременно и прямо-, и криволинейным (если тело перемещается во вращающейся системе или перемещается, вращаясь), и тогда речь пойдет о силе Кориолиса.
Рассмотрим подробнее виды сил инерции и условия их возникновения.
1. СИЛА ИНЕРЦИИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯFi. Она возникает, когда тело движется по прямолинейной траектории. Мы постоянно сталкиваемся с действием этой силы в транспорте, движущемся по прямой дороге, при торможении и при наборе скорости. При торможении нас бросает вперед, т.к. скорость движения резко уменьшается, а наше тело старается сохранить ту скорость, которая у него была. При наборе скорости нас вдавливает в спинку сидения по той же причине. На рис. 2.1
Изображены направления ускорения и силы инерции поступательного движения в случае уменьшения скорости: ускорение направлено противоположно движению, а сила инерции направлена противоположно ускорению. Формула силы инерции задается вторым законом Ньютона: . Знак «минус» обусловлен тем, что векторы и имеют противоположные направления. Численное значение (модуль) этой силы соответственно вычисляется по формуле:
2. ЦЕНТРОБЕЖНАЯ СИЛА ИНЕРЦИИFi. Чтобы понять, как возникает эта сила, рассмотрим рис. 3.2, на котором изображен диск, вращающийся в горизонтальной плоскости, с шариком, прикрепленным к центру диска посредством растяжимой связи (например, резинки). Когда диск начинает вращаться, шарик стремится удалиться от
центра и натягивает резинку. Причем чем быстрее вращается диск, тем дальше удаляется шарик от центра диска. Такое перемещение шарика по плоскости диска обусловлено действием силы, которая называется центробежной силой инерции (Fцб). Таким образом, центробежная сила возникает при вращении и направлена вдоль радиуса от центра вращения.Fцб является силой инерции, а значит ее возникновение обусловлено наличием ускорения, которое должно быть направлено противоположно этой силе. Если центробежная сила направлена от центра, то очевидно, что причиной возникновения этой силы является нормальное (центростремительное) ускорение аn, ведь именно оно направлено к центру вращения (см. Тема 1, §1.2, п.3). Исходя из этого, получаем формулу центробежной силы. Согласно второму закону Ньютона F=ma, где m – масса тела. Тогда для центробежной силы инерции справедливо соотношение:
Учитывая (1.18) и (1.19), получаем:
3. СИЛА КОРИОЛИСА FK. При совмещении двух видов движения: вращательного и поступательного – появляется еще одна сила, называемая силой Кориолиса (или кориолисовой силой) по имени французского механика Густава Гаспара Кориолиса (1792-1843), который дал расчет этой силы.
Появление кориолисовой силы можно обнаружить на примере опыта, изображенного на рис. 3.3. Ни нем изображен диск, вращающийся в горизонтальной
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник