Цвет природа цвета компьютерная графика

Цвет природа цвета компьютерная графика

Свет как физическое явление представляет собой поток электромагнитных волн различной длины и амплитуды. Глаз человека, будучи сложной оптической системой, воспринимает эти волны в диапазоне длин приблизительно от 350 до 780 нм. Свет воспринимается либо непосредственно от источника, например, от осветительных приборов, либо как отраженный от поверхностей объектов или преломленный при прохождении сквозь прозрачные и полупрозрачные объекты. Цвет — это характеристика восприятия глазом электромагнитных волн разной длины, поскольку именно длина волны определяет для глаза видимый цвет. Амплитуда, определяющая энергию волны (пропорциональную квадрату амплитуды), отвечает за яркость цвета. Таким образом, само понятие цвета является особенностью человеческого «видения» окружающей среды.

На рис. 2.1 схематически изображен глаз человека. Фоторецепторы, расположенные на поверхности сетчатки, играют роль приемников света. Хрусталик — это своеобразная линза, формирующая изображение, а радужная оболочка исполняет роль диафрагмы, регулируя количество света, пропускаемого внутрь глаза. Чувствительные клетки глаза неодинаково реагируют на волны различной длины. Интенсивность света есть мера энергии света, воздействующего на глаз, а яркость — это мера восприятия глазом этого воздействия. Интегральная кривая спектральной чувствительности глаза приведена на рис. 2.2; это стандартная кривая Международной комиссии по освещению (МКО, или CIE — Comission International de l’Eclairage).

Фоторецепторы подразделяются на два вида: палочки и колбочки. Палочки являются высокочувствительными элементами и работают в условиях слабого освещения. Они нечувствительны к длине волны и поэтому не «различают» цвета. Колбочки же, наоборот, обладают узкой спектральной кривой и «различают» цвета. Палочек существует только один тип, а колбочки подразделяются на три вида, каждый из которых чувствителен к определенному диапазону длин волн (длинные, средние или короткие.) Чувствительность их также различна.

На рис. 2.3 представлены кривые чувствительности колбочек для всех трех видов. Видно, что наибольшей чувствительностью обладают колбочки, воспринимающие цвета зеленого спектра, немного слабее — «красные» колбочки и существенно слабее — «синие».

Таким образом, если функция C(\lambda)характеризует спектральное разложение светового излучения от некоторого источника (рис. 2.4), т. е. распределение интенсивности по длинам волн, то три типа колбочек будут посылать в мозг сигналы R, G, B(красный, зеленый, синий), мощность которых определяется интегральными соотношениями

\begin</p data-lazy-src=

Цветовой график МКО

Трехмерная природа восприятия цвета позволяет отображать его в прямоугольной системе координат. Любой цвет можно изобразить в виде вектора, компонентами которого являются относительные веса красного, зеленого и синего цветов, вычисленные по формулам

r=\frac<R data-lazy-src=

С использованием такого преобразования в 1931 г. были выработаны международные стандарты определения и измерения цветов. Основой стандарта стал так называемый двумерный цветовой график МКО. Поскольку, как показали физические эксперименты, сложением трех основных цветов можно получить не все возможные цветовые оттенки, то в качестве базисных были выбраны другие параметры, полученные на основе исследования стандартных реакций глаза на свет. Эти параметры — — являются чисто теоретическими, поскольку построены с использованием отрицательных значений основных составляющих цвета. Треугольник основных цветов был построен так, чтобы охватывать весь спектр видимого света. Кроме того, равное количество всех трех гипотетических цветов в сумме дает белый цвет. Координаты цветности строятся так же, как и в приведенной выше формуле:

x=\frac<X data-lazy-src=

X=\frac</p data-lazy-src=

Цветовой график МКО приведен на рис. 2.6. Область, ограниченная кривой, охватывает весь видимый спектр, а сама кривая называется линией спектральных цветностей. Числа, проставленные на рисунке, означают длину волны в соответствующей точке. Точка , соответствующая полуденному освещению при сплошной облачности, принята в качестве опорного белого цвета.

Цветовой график удобен для целого ряда задач. Например, с его помощью можно получить дополнительный цвет: для этого надо провести луч от данного цвета через опорную точку до пересечения с другой стороной кривой (цвета являютсядополнительными друг к другу, если при сложении их в соответствующей пропорции получается белый цвет). Для определения доминирующей длины волны какого-либо цвета также проводится луч из опорной точки до пересечения с данным цветом и продолжается до пересечения с ближайшей точкой линии цветностей.

Читайте также:  Хомяк где обитает природная зона

Для смешения двух цветов используются законы Грассмана. Пусть два цвета заданы на графике МКО координатами D_1=(x_1,y_1,Y_1)и D_2=(x_2,y_2,Y_2). Тогда смешение их дает цвет D_<12 data-lazy-src=

Цветовые модели, используемые в компьютерной графике, — это средства описания цветов в определенном диапазоне.

На основе описанных выше физических представлений в компьютерной графике была принята так называемая аддитивная цветовая модель, использующая три первичных составляющих цвета. Эта модель предполагает, что любой цвет можно рассматривать как взвешенную сумму трех основных цветов. Проиллюстрировать ее можно на примере освещения сцены с помощью трех прожекторов разного цвета. Каждый прожектор управляется независимо, и путем изменения мощности каждого из них можно воспроизвести практически все цвета. В модели RGB цвет можно представить в виде вектора в трехмерной системе координат с началом отсчета в точке (0,0,0). Максимальное значение каждой из компонент вектора примем за 1. Тогда вектор (1,1,1) соответствует белому цвету. Все цветовые векторы, таким образом, заключены внутри единичного куба, называемого цветовым кубом (рис. 2.7а).

Другая модель смешения цветов — субстрактивная цветовая модель, или модель CMY , использующая в качестве первичных составляющих цвета Cyan, Magenta, Yellow (голубой, пурпурный, желтый), которые являются дополнительными к Red, Green, Blue. В этой модели оттенки цвета получаются путем «вычитания» из падающего света волн определенной длины. Этот подход нуждается в пояснении. В этой системе координат вектор (0,0,0) соответствует белому цвету, а вектор (1,1,1) — черному. Соответствующий цветовой куб представлен на рис. 2.7б.

Связь между значениями (R,G,B) и (C,M,Y) для одного и того же цвета выражается формулой

\begin</p data-lazy-src=

В полноцветных дисплеях для каждого пикселя в видеопамять заносится тройка значений R, G, B. В этом случае для отображения пикселя из видеопамяти непосредственно выбираются значения R, G, B, которые и передаются на монитор (но могут и передаваться в таблицу цветности).

В моделях RGB и CMY легко задавать яркости для одного из основных цветов, но довольно затруднительно задать оттенок с требуемым цветовым тоном и насыщенностью, соответствующим какому-либо образцу цвета. В различного рода графических редакторах эта задача чаще всего решается с помощью интерактивного выбора из палитры цветов и формированием цветов в палитре путем подбора значений координат до получения требуемого визуального результата. Иногда такая палитра наглядно отображает выбор вектора из цветового куба: сначала посредством одного движка выбирается цветовая плоскость, а затем на этой плоскости выбирается конкретная точка. Но и таким методом не сразу удается достигнуть желаемого эффекта, поскольку не так просто выбрать правильную цветовую плоскость.

Цветовые модели HSV и HLS

Приведенные модели не охватывают всего диапазона видимого цвета, поскольку их цветовой охват — это лишь треугольник на графике МКО, вершинам которого соответствуют базовые цвета. Они являются аппаратно ориентированными, т.е. соответствуют технической реализации цвета в устройствах графического вывода. Но психофизиологическое восприятие света определяется не интенсивностью трех первичных цветов, а цветовым тоном, насыщенностью и светлотой. Цветовой тон позволяет различать цвета, насыщенность задает степень «разбавления» чистого тона белым цветом, а светлота — это интенсивность света в целом. Поэтому для адекватного нашему восприятию подбора оттенков более удобными являются модели, в числе параметров которых присутствует тон (Hue). Этот параметр принято измерять углом, отсчитываемым вокруг вертикальной оси. При этом красному цвету соответствует угол 0 \deg, зеленому — 120 \deg, синему — 240 \deg, а дополняющие друг друга цвета расположены один напротив другого, т.е. угол между ними составляет 180 \deg. Цвета CMY расположены посредине между составляющими их компонентами RGB. Существует две модели, использующие этот параметр.

Модель HSV (Hue, Saturation , Value, или тон, насыщенность, количество света) можно представить в виде световой шестигранной пирамиды (рис. 2.10), по оси которой откладывается значение V, а расстояние от оси до боковой грани в горизонтальном сечении соответствует параметру S (за диапазон изменения этих величин принимается интервал от нуля до единицы). Значение S равно единице, если точка лежит на боковой грани пирамиды. Шестиугольник, лежащий в основании пирамиды, представляет собой проекцию цветового куба в направлении его главной диагонали (рис. 2.11).

Источник

Оцените статью