- Вес тела | теория по физике 🧲 динамика
- Перегрузка
- Применение законов Ньютона для определения веса тела
- Опора или подвес неподвижны
- Ускорение опоры направлено вверх
- Ускорение опоры направлено вниз
- Вершина выпуклого моста
- Нижняя точка вогнутого моста
- Полный оборот на подвесе
- Вес тела имеет гравитационную природу
- Сила тяжести
- Вес тела
- 7. Сила тяжести. Вес тела. Перегрузки. Невесомость
- 8. Импульс тела. Импульс силы. Закон сохранения импульса
Вес тела | теория по физике 🧲 динамика
Вес тела имеет электромагнитную природу (не путать с силой тяжести – она возникает между двумя телами и имеет гравитационную природу!). Обозначается P . Измеряется динамометром. Единица измерения — Н (Ньютон).
Вес имеет направление, противоположное силе реакции опоры или силе натяжения нити. Точкой приложения веса является точка опоры или подвеса: P ↑↓ N или P ↑↓ T .
Согласно III закону Ньютона модуль веса тела определяется одной из следующих формул:
Если тело и опора или подвес неподвижны, то модули силы реакции опоры, силы натяжения подвеса, а также силы упругости равны модулю силы тяжести. Поэтому в неподвижной системе модуль веса неподвижного тела тоже равен модулю силы тяжести:
Если тело находится в состоянии невесомости, его вес равен нулю: P = 0. Это значит, что это тело не оказывает никакого действия ни на подвес, ни на опору.
Пример №1. Гиря массой 1 пуд стоит на полу. Определить вес гири.
Так как гиря покоится, ее вес будет равен модулю силы тяжести. 1 пуд = 16,38 кг. Следовательно:
Перегрузка
Перегрузка — отношение абсолютной величины линейного ускорения, вызванного негравитационными силами, к стандартному ускорению свободного падения на поверхности.
Перегрузка определяется отношением:
Перегрузка возникает, когда система, в которой находится тело, движется с ускорением.
Вес тела в движущейся равноускоренно системе
Вес тела в движущейся системе может быть больше или меньше веса того же тела в системе, которая находится в состоянии покоя:
- Если система движется равноускоренно в направлении ускорения свободного падения, вес тела меньше веса тела в неподвижной системе: при a ↑↑ g —P < P0.
- Если система движется равноускоренно в направлении, противоположном ускорению свободного падения, вес тела больше веса тела в неподвижной системе: при a ↑↓ g —P > P0.
- Если система движется с равномерной скоростью (ускорение равно нулю) в любом направлении по отношению к ускорению свободного падения, вес тела равен весу тела в неподвижной системе: при a = 0 —P = P0.
Применение законов Ньютона для определения веса тела
Опора или подвес неподвижны
N + m g = m a или T + m g = m a
Ускорение опоры направлено вверх
Ускорение опоры направлено вниз
Вершина выпуклого моста
Нижняя точка вогнутого моста
Полный оборот на подвесе
Проекция на ось ОУ в точке А:
Проекция на ось ОУ в точке В:
Пример №2. Автомобиль массой 1000 кг едет по выпуклому мосту с радиусом кривизны 40 м. Какую скорость должен иметь автомобиль в верхней точке моста, чтобы пассажиры в этой точке почувствовали невесомость?
Вес тела в верхней точке выпуклого моста равен:
Чтобы пассажиры почувствовали состояние невесомости, вес тела должен быть равен 0:
Масса не может быть нулевой, поэтому:
Значит, пассажиры в верхней точке моста почувствуют невесомость, если центростремительное ускорение будет равно ускорению свободного падения. Центростремительное ускорение определяется формулой:
Отсюда скорость автомобиля в верхней точке моста должна быть равна:
Четыре одинаковых кирпича массой m каждый сложены в стопку (см. рисунок). Если убрать два верхних кирпича, то модуль силы N, действующей со стороны горизонтальной опоры на первый кирпич, уменьшится на…
Алгоритм решения
Источник
Вес тела имеет гравитационную природу
Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения. Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.
Закон всемирного тяготения между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки
Ньютон обобщил законы движения небесных тел и выяснил, что сила гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.
Сила тяжести
Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свбодного падения.
Сила тяжести — это сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.
В соответствии со вторым законом Ньютона .
Если M — масса Земли, R — ее радиус, m — масса данного тела, то сила тяжести равна
Сила тяжести всегда направлена к центру Земли. В зависимости от высоты 9,831 м/с2 .
Вес тела
В технике и быту широко используется понятие веса тела.
Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете.
Вес тела обозначается . Единица веса — ньютон ( Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.
При этом предполагается, что тело неподвижно относительно опоры или подвеса.
Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.
Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.
Источник
7. Сила тяжести. Вес тела. Перегрузки. Невесомость
Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести
,
где М – масса Земли; R – радиус Земли.
Если на тело действует только сила тяжести, то оно совершает свободное падение. Модуль ускорения свободного падения g находят по формуле
.
Из данной формулы следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково.
Модуль силы тяжести можно определить по формуле . Эта сила имеет гравитационную природу. Вектор силы тяжести приложен к центру тяжести тела.
Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте от поверхности Земли модуль ускорения свободного падения определяют по формуле
.
Силу, с которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела.
Вес тела является упругой силой, приложенной к опоре или подвесу (т.е. к связи).
Если тело покоится или движется прямолинейно и равномерно, то его вес равен силе тяжести, т.е. .
Если тело движется ускоренно, то его вес зависит от этого ускорения и его направления относительно направления вектора ускорения свободного падения.
Если тело движется с ускорением а, направленным вертикально вверх, то его вес Увеличение веса тела, вызванное его ускоренным движением, называютперегрузкой.
Если тело движется с ускорением а, направленным вертикально вниз (т.е. совпадающим с направлением ускорения свободного падения), то его вес уменьшается. В этом случае он определяется по формуле
При свободном падении . Следовательно, в данном случае
, т.е вес отсутствует. Если тело движется только под действием силы тяжести (свободно падает), то оно находится всостоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.
8. Импульс тела. Импульс силы. Закон сохранения импульса
Уравнение второго закона Ньютона можно представить в виде , или
.
Внеся под знак дифференциала, получим
.
Векторную величину, равную произведению массы тела на его скорость, называют импульсом тела. Таким образом, импульс тела определяется по формуле . Следовательно,
, т.е. производная импульса материальной точки по времени равна равнодействующей всех сил, приложенных к точке.
Последнюю формулу можно представить в виде .
Приращение импульса за время равно
=
.
При =
. Величину
, равную произведению силы на время её действия, называют импульсом силы.
Изменение импульса тела за время равно импульсу силы, действующей на тело в течение этого времени.
Рассмотрим систему, состоящую из N материальных точек (систему тел).
Силы, с которыми на данное тело действуют остальные тела системы, называют внутренними.
Силы, обусловленные воздействием тел, не принадлежащих системе, называют внешними.
В случае отсутствия внешних сил систему называют замкнутой.
Импульсом системы называют векторную сумму импульсов тел, образующих систему
.
Группу тел, взаимодействующих не только между собой, но и с телами, не входящими в состав этой группы, называют незамкнутой системой. Силы, с которыми на тела данной системы действуют тела, не входящие в эту систему, называю внешними (обычно внешние силы обозначают буквой , а внутренние силы – буквой
.
Рассмотрим взаимодействие двух тел в незамкнутой системе. Изменение импульсов данных тел происходит как под действием внутренних сил, так и под действием внешних сил.
Согласно второму закону Ньютона, изменения импульсов рассматриваемых тел у первого и второго тел составляют
где t – время действия внешних и внутренних сил. Почленно сложив данные выражения, получим .
В этой формуле — полный импульс системы,
(согласно третьему закону Ньютона),
— равнодействующая всех внешних сил, действующих на тела данной системы. С учетом вышеизложенного получаем формулу
, из которой следует, чтополный импульс системы изменяется только под действием внешних сил. Если же система замкнутая, т.е.
, то
и, следовательно,
.
Закон сохранения импульса для замкнутой системы тел формулируется следующим образом: импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел этой системы между собой.
На законе сохранения импульса основано реактивное движение.
Источник