5 Виды радиоактивных излучений и их характеристика
Радиоактивность была открыта в 1896 г. французским ученым Антуаном Анри Беккерелем при изучении люминесценции солей урана. Оказалось, что урановые соли без внешнего воздействия (самопроизвольно) испускали излучение неизвестной природы, которое засвечивало изолированные от света фотопластинки, ионизовало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Таким же свойством обладали и вещества содержащие полоний 21084Ро и радий 226 88Ra.
Еще раньше, в 1985 г. были случайно открыты рентгеновские лучи немецким физиком Вильгельмом Рентгеном. Мария Кюри ввела в употребление слово «радиоактивность».
Радиоактивность – это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.
Различаются естественная и искусственная радиоактивности. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.
Существует несколько видов радиоактивного излучения, отличающихся по энергии и проникающей способности, которые оказывают неодинаковое воздействие на ткани живого организма.
Альфа-излучение — это поток положительно заряженных частиц, каждая из которых состоит из двух протонов и двух нейтронов. Проникающая способность этого вида излучения невелика. Оно задерживается несколькими сантиметрами воздуха, несколькими листами бумаги, обычной одеждой. Альфа-излучение может быть опасно для глаз. Оно практически не способно проникнуть через наружный слой кожи и не представляет опасности до тех пор, пока радионуклиды, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом — тогда они могут стать чрезвычайно опасными. В результате облучения относительно тяжелыми положительно заряженными альфа-частицами через определенное время могут возникнуть серьезные повреждения клеток и тканей живых организмов.
Бета-излучение — это поток движущихся с огромной скоростью отрицательно заряженных электронов, размеры и масса которых значительно меньше, чем альфа-частиц. Это излучение обладает большей проникающей способностью по сравнению с альфа-излучением. От него можно защититься тонким листом металла типа алюминия или слоем дерева толщиной 1.25 см. Если на человеке нет плотной одежды, бета-частицы могут проникнуть через кожу на глубину несколько миллиметров. Если тело не прикрыто одеждой, бета-излучение может повредить кожу, оно проходит в ткани организма на глубину 1‑2 сантиметра.
Гамма-излучение, подобно рентгеновским лучам, представляет собой электромагнитное излучение сверхвысоких энергий. Это излучение очень малых длин волн и очень высоких частот. С рентгеновскими лучами знаком каждый, кто проходил медицинское обследование. Гамма-излучение обладает высокой проникающей способностью, защититься от него можно лишь толстым слоем свинца или бетона. Рентгеновские и гамма-лучи не несут электрического заряда. Они могут повредить любые органы.
Все виды радиоактивного излучения нельзя увидеть, почувствовать или услышать. Радиация не имеет ни цвета, ни вкуса, ни запаха. Скорость распада радионуклидов практически нельзя изменить известными химическими, физическими, биологическими и другими способами. Чем больше энергии передаст излучение тканям, тем больше повреждений вызовет оно в организме. Количество переданной организму энергии называется дозой. Дозу облучения организм может получить от любого вида излучения, в том числе и радиоактивного. При этом радионуклиды могут находиться вне организма или внутри его. Количество энергии излучения, которое поглощается единицей массы облучаемого тела, называется поглощенной дозой и измеряется в системе СИ в грэях (Гр).
При одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- и гамма-излучений. Степень воздействия различных видов излучения на человека оценивают с помощью такой характеристики как эквивалентная доза. разному повреждать ткани организма. В системе СИ ее измеряют в единицах, называемых зивертами (Зв).
Радиоактивным распадом называется естественное радиоактивное превращение ядер, происходящее самопроизвольно. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием γ-фотона. Т.о. гамма-излучение — основная форма уменьшения энергии возбужденных продуктов радиоактивных превращений.
Альфа-распад. β-лучи представляют собой поток ядер гелия Не. Альфа-распад сопровождается вылетом из ядра α-частицы (Не), при этом первоначально превращается в ядро атома нового химического элемента, заряд которого меньше на 2, а массовое число – на 4 единицы.
Скорости, с которыми α-частицы (т.е. ядра Не) вылетают из распавшегося ядра, очень велики (~106 м/с).
Пролетая через вещество, α-частица постепенно теряет свою энергию, затрачивая ее на ионизацию молекул вещества, и, в конце концов, останавливается. α-частица образует на своем пути примерно 106 пар ионов на 1 см пути.
Чем больше плотность вещества, тем меньше пробег α-частиц до остановки. В воздухе при нормальном давлении пробег составляет несколько см, в воде, в тканях человека (мышцы, кровь, лимфа) 0,1-0,15 мм. α-частицы полностью задерживаются обычным листком бумаги.
α- частицы не очень опасны в случае внешнего облучения, т.к. могут задерживаться одеждой, резиной. Но α-частицы очень опасны при попадании внутрь человеческого организма, из-за большой плотности производимой имим ионизации. Повреждения, возникающие в тканях не обратимы.
Бета-распад бывает трех разновидностей. Первый – ядро, претерпевшее превращение, испускает электрон, второе – позитрон, третье – называется электронный захват (е-захват), ядро поглощает один из электронов.
Третий вид распада (электронный захват) заключается в том, что ядро поглощает один из электронов своего атома, в результате чего один из протонов превращается в нейтрон, испуская при этом нейтрино:
Скорость движения β-частиц в вакууме равна 0,3 – 0,99 скорости света. Они быстрее чем α-частицы, пролетают через встречные атомы и взаимодействуют с ними. β–частицы обладают меньшим эффектом ионизации (50-100 пар ионов на 1 см пути в воздухе) и при попадании β-частицы внутрь организма они менее опасны чем α-частицы. Однако проникающая способность β-частиц велика (от 10 см до 25 м и до 17,5 мм в биологических тканях).
Гамма-излучение – электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях, которое распространяется в вакууме с постоянной скоростью 300 000 км/с. Это излучение сопровождает, как правило, β-распад и реже – α-распад.
γ-излучение подобно рентгеновскому, но обладает значительно большей энергией (при меньшей длине волны). γ–лучи, являясь электрически нейтральными, не отклоняются в магнитном и электрическом полях. В веществе и вакууме они распространяются прямолинейно и равномерно во все стороны от источника, не вызывая прямой ионизации, при движении в среде они выбивают электроны, передавая им часть или всю свою энергию, которые производят процесс ионизации. На 1см пробега γ-лучи образуют 1-2 пары ионов. В воздухе они проходят путь от нескольких сот метров и даже километров, в бетоне – 25 см, в свинце – до 5 см, в воде – десятки метров, а живые организмы пронизывают насквозь.
γ-лучи представляют значительную опасность для живых организмов как источник внешнего облучения.
Источник
Альфа-, бета-, гамма-излучения
Из курса физики в 11 классе известно, что радиоактивное излучение испускается тяжелыми элементами при радиоактивном распаде. Ядро тяжелого элемента превращается в более легкие, испуская при этом излучение, которое имеет сложный состав. Поговорим кратко об основных видах радиоактивного излучения — альфа, бета, гамма.
Радиоактивное излучение
Радиоактивность была случайно открыта А. Беккерелем в конце XIX в. Оказалось, что все тяжелые элементы с номером более 83 постоянно испускают невидимые лучи, которые способны засвечивать фотопластинки даже без их экспонирования.
При более детальном исследовании радиоактивного излучения выяснилось, что оно имеет сложный состав. Э. Резерфорд поставил эксперимент, в котором радиоактивное излучение радия проходило сквозь сильное магнитное поле и при этом распадалось на три компоненты с различными проникающими и ионизирующими способностями. Эти компоненты были названы альфа-, бета-, гамма-излучением.
В дальнейшем были обнаружены и некоторые другие виды излучения (например, нейтронное), однако эти три вида встречались наиболее часто и сопровождали распад практически всех тяжелых элементов.
Альфа-излучение
Альфа-лучами назвали положительно заряженные частицы, слабо отклонявшиеся магнитным полем. Альфа-излучение обладало самой малой проникающей способностью, но при этом наиболее сильно ионизировало вещество. По отклонению альфа-частиц установили, что отношение заряда к массе у этих частиц вдвое меньше, чем у протона, а масса — вчетверо больше, чем масса протона.
Было сделано предположение (позже доказанное), что альфа-частицы представляют собой ядра гелия. Большой заряд и масса частиц обусловили их высокую ионизирующую способность. При этом частицы быстро теряют энергию, и поэтому проникающая способность альфа-частиц очень невелика.
Слой вещества порядка миллиметра полностью задерживает поток альфа-частиц. Например, внутрь живой ткани альфа-частицы не проникают, задерживаясь кожей. Однако высокая ионизирующая способность приводит к сильным кожным ожогам. Еще более опасно попадание альфа-радиоактивных препаратов внутрь организма.
Бета-излучение
Бета-излучением были названы лучи, сильно отклоняющиеся магнитным полем в противоположную (относительно альфа-излучения) сторону. Такое отклонение означало, что бета-частицы имеют отрицательный заряд, а их отношение заряда к массе гораздо больше, чем у альфа-частиц и у протонов.
Дальнейшие исследования бета-излучения показали, что оно имеет все те же характеристики, что и катодные лучи, а в 1897 г. Дж. Томсон открыл электрон и доказал, что бета-частицы являются электронами, летящими с большой скоростью.
Бета-излучение обладает меньшей ионизирующей способностью, по сравнению с альфа-излучением, но при этом более глубоко проникает в вещество.
Гамма-излучение
Наиболее высокой проникающей способностью обладает гамма-излучение. Эта компонента радиоактивных лучей не взаимодействует с магнитным полем, следовательно, гамма-частицы не имеют электрического заряда. Детальное изучение гамма-частиц показало, что их свойства эквивалентны квантам электромагнитного излучения (фотонам) высоких энергий с очень малой длины волны.
Гамма-излучение обладает наименьшей ионизирующей и наибольшей проникающей способностью: для защиты от гамма-излучения требуется слой вещества большой толщины.
Сравнительные характеристики радиоактивных излучений удобно представить в виде таблицы:
Что мы узнали?
Главными компонентами радиоактивного излучения являются альфа-, бета- и гамма-частицы. Альфа-частицы — это положительно заряженные ядра гелия, бета-частицы — это отрицательные электроны, гамма-частицы — это нейтральные фотоны высоких энергий.
Источник