4 Вида взаимодействий в природе:
Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействияэлементарных частиц и составленных из них тел.
На сегодня достоверно известно существование четырех фундаментальных взаимодействий:
А) гравитационного (Гравита́ция (притяжение, всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительностиЭйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий.)
Б) электромагнитного(Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающимиэлектрическим зарядом[1]. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.)
В) сильного(Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствие, я́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны). Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов — протоны и нейтроны) в ядрах.)
Г) слабого(Слабое взаимодействие, или слабое ядерное взаимодействие — одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета-распадядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, значительно меньших размера атомного ядра )
При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.
Центр масс системы точек:
Центр масс, центр ине́рции, барице́нтр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр) — (в механике) геометрическая точка, характеризующая движение тела или системы точек как целого.
Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:
— радиус-вектор центра масс,
— радиус-вектор i-й точки системы,
— масса i-й точки.
Центр масс, таким образом, характеризует распределение массы по телу или системе точек.
6. Работа, энергия и мощность силы в поступательном и вращательном движениях. Кинетическая энергия и работа сил.
1.Работа и работа сил
Работа – это физическая величина, характеризующая процесс превращения одной формы движения в другую. В механике принято говорить, что работа совершается силой. Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой 1 Н на пути 1 м (1 Дж=1 Н м).
Элементарной работой силы называется величина, равная скалярному произведению силы на элементарное перемещение :
где – элементарный путь точки приложения силы за время dt, – угол между векторами и .
Если на систему действуют несколько сил, то результирующая работа равна алгебраической сумме работ, совершаемых каждой силой в отдельности. Работа силы на конечном участке траектории или за конечный промежуток времени может быть вычислена следующим образом:
При вращательном движении работа определяется проекцией момента сил на направление угловой скорости:
Быстроту совершения работы характеризует мощность. Мощностью называется скалярная величина, равная работе, совершаемой в единицу времени:
– средняя мощность; – мгновенная мощность.
При вращательном движении мощность определяется следующим образом:
2.Энергия. Кинетическая энергия
Энергия — универсальная мера различных форм движения и взаимодействия. С различными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и др.
Энергия также бывает кинетическая и потенциальная, а вместе они составляют полную механическую энергию.
Кинетической энергией тела называется функция механического состояния, зависящая от массы тела и скорости его движения (энергия механического движения).
Кинетическая энергия поступательного движения
Кинетическая энергия вращательного движения
При сложном движении твёрдого тела его кинетическая энергия может быть представлена через энергию поступательного и вращательного движения:
Источник
Виды взаимодействий в природе.
Гравитационное взаимодействие. Гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя телами массы m1 и m2, разделённых расстоянием R есть
.
Здесь G — гравитационная постоянная, равная м 3 /(кг с 2 ). Знак минус означает, что сила, действующая на тело, всегда противоположна по направлению радиус-вектору, направленному на тело, т. е. гравитационное взаимодействие приводит всегда к притяжению любых тел.
Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру.
Гравитация — дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. Благодаря дальнодействию гравитация удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике.
Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это тем не менее очень важная сила во Вселенной. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствует гравитация.
Гравитация ответственна и за такие крупномасштабный эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.
Электромагнитное взаимодействие. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом, а также между электрически нейтральными составными частицами, части которых обладают зарядом. В электромагнитном взаимодействии участвуют кварки, электрон, мюон и тау-частица, а также заряженые бозоны.
С точки зрения квантовой теории поля электромагнитное взаимодействие переносится фотоном.
Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного, и единственная причина, по которой электромагнитное взаимодействие не проявляется с большой силой на космических масштабах — электрическая нейтральность материи, то есть наличие в каждой области Вселенной равных количеств положительных и отрицательных зарядов.
На проводник с током, помещенный в магнитное поле, действует сила Ампера:
На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца:
Сильное взаимодействие (ядерное взаимодействие). Сильное взаимодействие действует в масштабах атомных ядер и меньше, отвечая за притяжение между нуклонами в ядрах и между кварками в адронах.
В сильном взаимодействии участвуют кварки и глюоны, а также составленные из них элементарные частицы, называемые адронами.
Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, — Солнце.
По своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Сильное взаимодействие проявляется на расстоянии, определяемом размерами ядра, т.е. примерно 10 -13 см. Сильное взаимодействие испытывают не все частицы. Так, его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны неподвластны ему. В сильном взаимодействии участвуют обычно только тяжелые частицы. Оно ответственно за образование ядер и многие взаимодействия элементарных частиц.
Слабое взаимодействие, или слабое ядерное взаимодействие. Оно ответственно за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, меньших размера атомного ядра.
В слабом взаимодействии участвуют все фундаментальные фермионы (лептоны и кварки). Это единственное взаимодействие, в котором участвуют нейтрино. Слабое взаимодействие позволяет лептонам, кваркам и их античастицам обмениваться энергией, массой, электрическим зарядом и квантовыми числами — то есть превращаться друг в друга.
Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой — малого радиуса (сильное и слабое).
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник
1. Экологические взаимоотношения, безразличные для одного (или обоих) партнёров
Живые организмы постоянно взаимодействуют между собой и влияют на окружающую среду. Такие взаимодействия являются биотическими факторами среды обитания.
(\(+\)) — вид получает преимущество (положительное воздействие);
(\(–\)) — вид испытывает отрицательное воздействие;
(\(0\)) — для вида нет ни вреда, ни пользы.
(\(+\) \(0\)) Комменсализм — один вид использует другой вид без нанесения ему вреда (разновидности — нахлебничество, сотрапезничество, квартирантство ).
(\(+\) \(+\)) Симбиотические отношения — взаимовыгодные полезные связи между организмами (разновидности — протокооперация, мутуализм, симбиоз ).
(\(+\) \(–\)) Паразитизм — организмы вида-паразита живут определённое время в организме вида-хозяина и питаются его тканями.
Рис. \(1\). Лось
Рис. \(2\). Белка
Нейтрализм в природе встречается редко, так как виды могут влиять друг на друга косвенно, изменяя среду обитания. Мы не всегда замечаем такие взаимодействия из-за ограниченности наших знаний.
Один из видов, обитающих на одной территории, может оказывать отрицательное влияние на другой, не получая от этого никакой пользы.
светолюбивые травянистые растения в лесу угнетаются из-за недостатка света, а для деревьев такое взаимодействие не имеет значения.
Комменсализм (\(+\) \(0\)) — один вид (комменсал) получает пользу, а другому виду отношения безразличны.
Наблюдается использование одного организма другим без нанесения ему ущерба. Это взаимосвязи, выгодные для одного из взаимодействующих видов и нейтральные для другого (переходная форма от нейтрализма к мутуализму).
некоторые млекопитающие (волки, лисы, лоси, олени и др.) переносят на своей шерсти плоды и семена с различными крючками и зазубринами (вроде череды и репейника). Такое взаимодействие полезно растениям, а на животных оно никак не влияет.
рыбы-прилипалы — частые спутники акул. Их передний спинной плавник преобразовался в присоску, что позволяет им удерживаться на теле акулы, постоянно следуя за ней. Такое сожительство нейтрально для акулы, но приносит выгоду рыбе-прилипале (обеспечение пищей и облегчение передвижения).
взаимоотношения между видами насекомых, а также взрослыми насекомыми и их личинками, питающимися разными частями одного растения: бабочкам нужен нектар, а их гусеницы и жуки объедают листья.
Квартирантство — использование организмами одного вида жилища или организма другого вида в качестве убежища.
взаимоотношения между растениями и дуплогнёздниками (на фото сова в дупле). Те из птиц и зверей, которые заселяют уже существующие дупла, тем самым не наносят деревьям вреда, но и не приносят пользы.
такой тип взаимоотношений широко распространён у растений. В тропических лесах распространены эпифиты — растения, поселяющиеся на стволах и ветвях других растений. Переместившись на деревья, они поднялись от сумерек к свету. Никакого урона деревьям они не наносят, а воду и питательные вещества получают из атмосферы.
Источник