Все законы природы инвариантны

Все законы природы инвариантны

Специальная (или частная ) теория относительности (СТО) представляет собой современную физическую теорию пространства и времени. Наряду с квантовой механикой, СТО служит теоретической базой современной физики и техники. СТО часто называют релятивистской теорией , а специфические явления, описываемые этой теорией, – релятивистскими эффектами . Эти эффекты наиболее отчетливо проявляются при скоростях движения тел, близких к скорости света в вакууме . Специальная теория относительности была создана А. Эйнштейном (1905 г.). Предшественниками Эйнштейна, очень близко подошедшими к решению проблемы, были нидерландский физик Х. Лоренц и выдающийся французский физик А. Пуанкаре.

4.1. Постулаты СТО

Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени , одинакового во всех системах отсчета. В основе классической механики лежит механический принцип относительности (или принцип относительности Галилея ): законы динамики одинаковы во всех инерциальных системах отсчета . Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея , которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (), если заданы координаты этого тела в другой инерциальной системе (). В частном случае, когда система движется со скоростью υ вдоль положительного направления оси системы (рис. 4.1.1), преобразования Галилея имеют вид:

Предполагается, что в начальный момент оси координат обеих систем совпадают.

Из преобразований Галилея следует классический закон преобразования скоростей при переходе от одной системы отсчета к другой:

Ускорения тела во всех инерциальных системах оказываются одинаковыми:

Следовательно, уравнение движения классической механики (второй закон Ньютона) не меняет своего вида при переходе от одной инерциальной системы к другой.

К концу XIX века начали накапливаться опытные факты, которые вступали в противоречие с законами классической механики. Большие затруднения возникли при попытках применить механику Ньютона к объяснению распространения света. Предположение о том, что свет распространяется в особой среде – эфире, было опровергнуто многочисленными экспериментами. Американский физик А. Майкельсон сначала самостоятельно в 1881 году, а затем совместно с Э. Морли (тоже американец) в 1887 году пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью интерференционного опыта. Упрощенная схема опыта Майкельсона–Морли представлена на рис. 4.1.2.

В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (). Затем прибор поворачивался на 90°, и второе плечо оказывалось ориентированным по направлению орбитальной скорости. Расчеты показывали, что если бы неподвижный эфир существовал, то при повороте прибора интерференционные полосы должны были сместиться на расстояние, пропорциональное () 2 . Опыт Майкельсона–Морли, неоднократно повторенный впоследствии со все более возрастающей точностью, дал отрицательный результат. Анализ результатов опыта Майкельсона–Морли и ряда других экспериментов позволил сделать вывод о том, что представления об эфире как среде, в которой распространяются световые волны, ошибочно. Следовательно, для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не влияет на оптические явления на Земле.

Читайте также:  Використання енергії природних джерел

Исключительную роль в развитии представлений о пространстве и времени сыграла теория Максвелла. К началу XX века эта теория стала общепризнанной. Предсказанные теорией Максвелла электромагнитные волны, распространяющиеся с конечной скоростью, уже нашли практическое применение – в 1895 году А. С. Поповым было изобретено радио. Но из теории Максвелла следует, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета имеет одно и то же значение, равное скорости света в вакууме. Это значит, что уравнения, описывающие распространение электромагнитных волн, не инвариантны относительно преобразований Галилея. Если электромагнитная волна (в частности, свет) распространяется в системе отсчета (рис. 4.1.1) в положительном направлении оси , то в системе свет должен, согласно галилеевской кинематике распространяться со скоростью , а не .

Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Выход был найден Эйнштейном ценой отказа от классических представлений о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными, т. е. не зависящими от системы отсчета, в эйнштейновской теории относительности переведены в разряд относительных.

Так как все физические явления происходят в пространстве и во времени, новая концепция пространственно-временных закономерностей не могла не затронуть в итоге всю физику.

В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.

  1. Принцип относительности : все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой . Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна .
  2. Принцип постоянства скорости света : скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета . Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую.

Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.

Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени , когда координатные оси двух инерциальных систем и совпадают, в общем начале координат произошла кратковременная вспышка света. За время системы сместятся относительно друг друга на расстояние , а сферический волновой фронт в каждой системе будет иметь радиус (рис. 4.1.3), так как системы равноправны и в каждой из них скорость света равна .

С точки зрения наблюдателя в системе центр сферы находится в точке , а с точки зрения наблюдателя в системе он будет находиться в точке . Следовательно, центр сферического фронта одновременно находится в двух разных точках!

Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени . Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: . Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях () переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.

Источник

Постулаты Эйнштейна

В своей работе Эйнштейн без единого нового эксперимента, проанализировав и обобщив уже известные опытные факты, впервые изложил идеи теории относительности, которые коренным образом изменили привычные представления о свойствах пространства и времени.

Теория относительности Эйнштейна состоит из двух частей: частной и общей теории относительности. В 1905 г. Эйнштейн опубликовал основные идеи частной или специальной теории относительности, в которой рассматриваются свойства пространства и времени, справедливые при условиях, когда можно пренебречь тяготением тел, т.е. считать их гравитационные поля ‘пренебрежимо малыми. Теория относительности, в которой рассматриваются свойства пространства и времени в сильных гравитационных полях, называется общей теорией относительности. Принципы общей теории относительности были изложены Эйнштейном на 10 лет позже, чем частной, в 1915 г.

В основу специальной теории относительности Эйнштейна легли два постулата, т.е. утверждения, которые принимаются за истинные в рамках данной научной теории без доказательств (в математике такие утверждения называются аксиомами).

1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.

2 постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.

Анализируя 1 постулат Эйнштейна, мы видим, что Эйнштейн расширил рамки принципа относительности Галилея, распространив его на любые физические явления, в том числе и на электромагнитные. 1 постулат Эйнштейна непосредственно вытекает из опыта Майкельсона-Морли, доказавшего отсутствие в природе абсолютной системы отсчета. Из результатов этого нее опыта следует и 2 постулат Эйнштейна о постоянстве скорости света в вакууме, который тем не менее вступает в противоречие с 1 постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и галилеево правило сложения скоростей, вытекающее из галилее-ва правила преобразования координат (см. п. 10). Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

Источник

Читайте также:  Важнейшие природные соединения алюминия характеристика
Оцените статью