Тема 1.3. СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГАЗА
Природные газы – это вещества, которые при нормальных условиях находятся в газообразном состоянии.
Углеводородные газы, в зависимости от их состава, давления и температуры могут находиться в залежи в различных состояниях – газообразном, жидком или в виде газожидкостных смесей. Газ обычно расположен в газовой шапке в повышенной части пласта.
Если газовая шапка в нефтяной залежи отсутствует (это возможно при высоком пластовом давлении или особом строении залежи), то весь газ залежи растворён в нефти. Этот газ будет, по мере снижения давления, выделятся из нефти при разработке месторождения и будет называться попутным газом.
В пластовых условиях все нефти содержат растворённый газ. Чем выше давление в пласте, тем больше растворённого газа в нефти.
Давление, при котором весь имеющийся в залежи газ растворён в нефти, называется давлением насыщения. Оно определяется составом нефти и газа и температурой в пласте.
От давления насыщения зависит газовый фактор – количество газа (в м 3 ), содержащееся в 1 тонне нефти.
Газы могут находиться в пласте в трёх состояниях: свободном, сорбированном, растворённом.
Состав природных газов
Природные газы, добываемые из газовых, газоконденсатных и нефтяных месторождений, состоят из углеводородных компонентов (СН4 – С22Н46), а также неуглеводородных компонентов (H2S, N2, CO, CO2, Ar, H2, He).
При нормальных и стандартных условиях в газообразном состоянии существуют только углеводороды С1–С4. Углеводороды С5 и выше в нормальных условиях находятся в жидком состоянии.
Газы, добываемые из чисто газовых месторождений, содержат более 95% метана.
Таблица 4 Химический состав газа газовых месторождений, об. %
Месторождение | СН4 | С2Н6 | С3Н8 | С4Н10 | С5Н12 | N2 | СО2 | Относит. плотность |
Северо-Ставропольское | 98,9 | 0,29 | 0,16 | 0,05 | – | 0,4 | 0,2 | 0,56 |
Уренгойское | 98,84 | 0,1 | 0,03 | 0,02 | 0,01 | 1,7 | 0,3 | 0,56 |
Шатлыкское | 95,58 | 1,99 | 0,35 | 0,1 | 0,05 | 0,78 | 1,15 | 0,58 |
Медвежье | 98,78 | 0,1 | 0,02 | – | – | 1,0 | 0,1 | 0,56 |
Содержание метана на газоконденсатных месторождениях – 75-95%.
Таблица 5. Химический состав газа газоконденсатных месторождений, об. %
Месторождение | СН4 | С2Н6 | С3Н8 | С4Н10 | С5Н12 | N2 | СО2 | Относит. плотность |
Вуктыльское | 74,80 | 7,70 | 3,90 | 1,80 | 6,40 | 4,30 | 0,10 | 0,882 |
Оренбургское | 84,00 | 5,00 | 1,60 | 0,70 | 1,80 | 3,5 | 0,5 | 0,680 |
Ямбургское | 89,67 | 4,39 | 1,64 | 0,74 | 2,36 | 0,26 | 0,94 | 0,713 |
Уренгойское | 88,28 | 5,29 | 2,42 | 1,00 | 2,52 | 0,48 | 0,01 | 0,707 |
Газы, добываемые вместе с нефтью (попутный газ) представляют собой смесь метана, этана, пропан-бутановой фракции (сжиженного газа) и газового бензина. Содержание метана – около 35-85%. Содержание тяжёлых углеводородов в попутном газе 20-40%, реже – до 60%.
Таблица 6.Химический состав газа нефтяных месторождений (попутного газа), об. %
Тяжёлым нефтям свойственны сухие нефтяные газы (с преобладанием метана).
Под тяжелыми УВ понимаются углеводороды от этана (С2Н6) и выше.
Лёгким нефтям свойственны жирные газы:
Физико-химические свойства углеводородных газов
Нефтяной газ при нормальных условиях – неполярная, аддитивная система (смесь компонентов от С1 до С4). Следовательно, к нему при нормальных условиях применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):
Пi – параметр i-го компонента.
Плотность смеси газов рассчитывается следующим образом:
При нормальных условиях плотность газа rг = Mi / 22,414.
Нефтяной газ представлен в виде смеси углеводородов, поэтому для оценки его физико-химических свойств необходимо знать, как выражается состав смеси.
Массовая доля (gi) – отношение массы i-го компонента, содержащегося в системе к общей массе системы:
Молярная (мольная) доля (Ni) – отношение числа молей i-го компонента к общему числу молей в системе:
где mi – масса i-го компонента;
Объёмная доля (Vi) – доля, которую занимает компонент в объёме системы.
Для идеального газа соблюдается соотношение Vi = Ni.
Молекулярная масса смеси рассчитывается следующим образом:
Относительная плотность газа по воздуху:
Для нормальных условий » 1,293; для стандартных условий » 1,205.
Если плотность газа задана при атмосферном давлении (0,1013 МПа), то пересчёт её на другое давление (при той же температуре) для идеального газа производится по формуле:
Смеси идеальных газов характеризуются аддитивностью парциальных давлений и парциальных объёмов.
Для идеальных газов давление смеси равно сумме парциальных давлений компонентов (закон Дальтона):
где Р – давление смеси газов;
рi – парциальное давление i-го компонента в смеси,
Т. е. парциальное давление газа в смеси равно произведению его молярной доли в смеси на общее давление смеси газов.
Аддитивность парциальных объёмов компонентов газовой смеси выражается законом Амага:
Vi – объём i-го компонента в смеси.
Для определения многих физических свойств природных газов используется уравнение состояния.
Уравнением состояния называется аналитическая зависимость между параметрами, описывающими изменение состояние вещества. В качестве таких параметров используется давление, температура, объём.
Состояние газа при стандартных условиях характеризуется уравнением состояния Менделеева-Клайперона:
где Р – абсолютное давление, Па;
Q – количество вещества, кмоль;
Т – абсолютная температура, К;
R – универсальная газовая постоянная Па×м 3 /(кмоль×град).
У этого уравнения есть свои граничные условия. Оно справедливо для идеальных газов при нормальном (1 атм.) и близких к нормальному давлениях (10-12 атм.).
При повышенном давлении газ сжимается. За счёт направленности связи С-Н происходит перераспределение электронной плотности, и молекулы газов начинают притягиваться друг к другу.
Для учёта этого взаимодействия в уравнение (3.18) вводится коэффициент сверхсжимаемости z, предложенный голландским физиком Ван-дер-Ваальсом, учитывающий отклонения реального газа от идеального состояния:
где Q – количество вещества, моль.
Физический смысл коэффициента сверхсжимаемости заключается в расширении граничных условий уравнения Клайперона-Менделеева для высоких давлений.
Коэффициент z зависит от давления и температуры, природы газа (критических давлений и температуры).
Критическое давление – давление, при котором газообразный углеводород переходит в жидкое состояние.
Критическая температура – температура, при которой жидкий углеводород переходит в газообразное состояние.
Приведёнными параметрами индивидуальных компонентов называются безразмерные величины, показывающие, во сколько раз действительные параметры состояния газа отклоняются от критических:
Существуют графики, эмпирические формулы и зависимости для оценки коэффициента сверхсжимаемости от приведенных давлений и приведенных температур.
Зная коэффициент сверхсжимаемости, можно найти объём газа в пластовых условиях по закону Бойля-Мариотта:
Объёмный коэффициент газа используется при пересчёте объёма газа в нормальных условиях на пластовые условия и наоборот (например, при подсчёте запасов):
Вязкость газа – свойство газа оказывать сопротивление перемещению одной части газа относительно другой.
Различают динамическую вязкость m и кинематическую вязкость n. Кинематическая вязкость учитывает влияние силы тяжести.
Динамическая вязкость зависит от средней длины пробега молекул газа и от средней скорости движения молекул газа:
– средняя длина пробега молекулы;
Кинематическая вязкость природного газа при нормальных условиях невелика и не превышает 0,01 сантипуаза.
Динамическая вязкость газа увеличивается с ростом температуры (при повышении температуры увеличивается средняя скорость и длина пробега молекул), однако при давлении более 3 МПа вязкость с ростом температуры начинает снижаться. От давления вязкость газа практически не зависит (снижение скорости и длины пробега молекул при увеличении давления компенсируется ростом плотности).
Растворимость газов в нефти и воде
От количества растворённого в пластовой нефти газа зависят все её важнейшие свойства: вязкость, сжимаемость, термическое расширение, плотность и т.д.
Распределение компонентов нефтяного газа между жидкой и газообразной фазами определяется закономерностями процессов растворения. Способность газа растворятся в нефти и воде имеет большое значение на всех этапах разработки месторождений от добычи нефти до процессов подготовки и транспортировки.
Процесс растворения для идеального газа при небольших давлениях и температурах описывается законом Генри:
где Vж – объём жидкости-растворителя;
a – коэффициент растворимости газа;
Vг – количество газа, растворённого при данной температуре;
Р – давление газа над поверхностью жидкости
Коэффициент растворимости газа a показывает, какое количество газа растворяется в единице объёма жидкости при данном давлении:
Коэффициент растворимости зависит от природы газа и жидкости, давления, температуры.
Минимальное давление, при котором весь газ растворяется в жидкости (т.е. переходит в жидкое состояние), называется давлением насыщения.
Если пластовое давление меньше давления насыщения, то часть газа находится в свободном состоянии (залежь имеет газовую шапку). Если пластовое давление больше давления насыщения, то говорят, что нефть «недонасыщена» газом и весь газ растворён в нефти.
Природа воды и углеводородов различается, а, следовательно, углеводородная составляющая нефтяного газа растворяется в воде хуже, чем в нефти.
Неуглеводородные компоненты нефтяного газа, такие как СО, СО2, Н2S, N2 растворяются в воде лучше. Например, пластовая вода сеноманского горизонта очень газирована (5 м 3 газа СО и СО2 на 1 т воды).
С повышением давления растворимость газа растёт, а с повышением температуры – падает. Растворимость газа зависит также от минерализации воды.
Разные компоненты нефтяного газа обладают разной способностью растворятся в жидкостях, причём с увеличением молекулярной массы газового компонента растёт коэффициент растворимости.
Количество выделившегося из нефти газа зависит не только от содержания газа в нефти, но и от способа дегазирования. Различают контактное разгазирование, когда выделившийся газ находится в контакте с нефтью, и дифференциальное разгазирование, когда выделившийся из нефти газ непрерывно отводится из системы.
Строгое соблюдение условий дифференциального дегазирования затруднено, поэтому используется многократное (ступенчатое) дегазирование.
В процессе добычи нефти встречаются оба способа дегазирования. В начальные периоды снижения давления от давления насыщения, когда газ ещё неподвижен относительно нефти, происходит контактное разгазирование. В последующий период, по мере выделения газа из нефти, газ быстрее движется к забою скважины и происходит дифференциальное разгазирование.
Коэффициент разгазирования – количество газа, выделившегося из единицы объёма нефти при снижении давления на единицу.
При движении газа по пласту наблюдается т.н. дроссельный эффект – уменьшение давления газового потока при его движении через сужения в каналах. При этом наблюдается изменение температуры. Интенсивность изменения температуры при изменении давления характеризуется коэффициентом Джоуля-Томсона:
где DТ – изменение температуры:
a – коэффициент Джоуля-Томсона (зависит от природы газа, давления, температуры);
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник